• Title/Summary/Keyword: Low Density Planting

Search Result 97, Processing Time 0.027 seconds

Analysis of Transplanting Accuracy of Rice Transplanter for Low density Planting According to Transfer Distance to Seedling Tray (소식재배용 이앙기 모판 이송간격에 따른 이앙정확도 분석)

  • Won-Kyung Kim;Sang Hee Lee;Deok Gyu Choi;Seok Ho Park;Youn Koo Kang;Seok Pyo Moon;Chang Uk Cheon;Sung Hyuk Jang
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.30-35
    • /
    • 2024
  • Domestic rice is more expensive than imported products, so it is necessary to reduce production costs to secure competitiveness. Low-density planting developed in Japan is a cultivation technology that reduces labor and production costs without yield loss. The area of low-density cultivation is continuously increasing. However, research on how rice transplanters adapt to low-density planting has not been conducted. Therefore, this study was carried out to determine the optimal working conditions of a rice transplanter for low-density planting. Three types of rice transplanters were used and treated based on 3 conveying distance levels. The number of picked seedlings, pick missing rate, the number of planted seedlings, and the mis-planted rate were investigated to evaluate planting accuracy according to the transfer distance to the seedling tray. The results showed that the number of planted seedlings was 4.31~4.95 EA with an L1 seedling tray transfer distance (horizontal 9 mm, vertical 8 mm), but the mis-planted rate was higher than in other conditions. At L2 (horizontal 9 mm, vertical 10 mm) and L3 (horizontal 11 mm, vertical 8 mm) transfer distance conditions, the number of planted seedlings were 4.89-5.68 EA and 4.69-5.66 EA, respectively, with a low mis-planted rate of less than 3%. The results showed that if the transfer distance is adjusted properly, a rice transplanter can be used for low-density planting with high planting accuracy.

Characteristics of Waesungri Maize (Zea mays L.) Inbred with Multi Tillers and Ears for Crude Forage Use

  • Lee, Hee-Bong
    • Plant Resources
    • /
    • v.4 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • Major characteristics of new Waesungri maize inbred line has multi-tiller and ears: five to six tillers and seven to eight ears per plant and flowering date of Waesungri was delayed about 18 and 24 days compared to Mo17 U.S line and IK$_4$ Korean local lines, respectively. Number of ears, fresh and dry weight per plant were significantly different among all tested hybrids including Waesungri/Sinkihong hybrid under different planting times and densities. Especially, both fresh and dry weight of IK$_1$/FR140//Waesungri F$_1$hybrid were significantly higher at high planting density. In kernel weight per unit area, Wnesungri/Sinkihong hybrid was high at high density and IK$_1$/FR140//Waesungri hybrid was high at low planting density. As results of analysis of variance, flowering date was shown a significantly different both planting times and varieties, while other characters including stem height were shown very variable in interactions with enviromental factors.

  • PDF

Optimum Planting Density in Low Fertilizing Culture of Machine Transplanting in Rice (벼 기계이앙 소비재배시 적정 재식밀도 구명)

  • Choi Weon-Young;Moon Sang-Hoon;Park Hong-Kyu;Choi Min-Gyu;Kim Sang-Su;Kim Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.379-385
    • /
    • 2006
  • This experiment was carried out to investigate the optimum planting density in low fertilizing cultivation of machine transplanting in rice field of Honam Agricultural Research Institute, NICS for $2004{\sim}2005$. Sobibyeo which belongs to medium maturing variety and Nampyeongbyeo which belongs to medium-late maturing variety were transplanted on May 30. In this experiment, there was no significant difference in heading date between planting density and nitrogen fertilization rate, and heading dates were August 8 in Sobibyeo, and August 14 in Nampyeongbyeo respectively. In relation to lodging character, lodging Index was high where the nitrogen fertilization rate and planting density were high. As planting density increases, panicle number per $m^{2}$ increased irrespective of nitrogen fertilization rate. When nitrogen was 6 kg/10a, rice yield of Sobibyeo was more where planting density was 90 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 80 hill per $3.3m^{2}$. When nitrogen was 9 kg/10a, rice yield of Sobibyeo was more where planting density was 100 hill per $3.3m^{2}$, and that of Nampyeongbyeo was more where planting density was 110 hill per $3.3m^{2}$. Head rice rate of brown rice was higher when planting density increased, and was higher at 6 kg/10a nitrogen rate than 9 kg/10a nitrogen rate in all varieties.

Growth of Landscape Tree Species at Two Planting Densities in a Planting Pilot System for Reclaimed Dredging Areas (임해준설매립지 식물재배공정에서 밀도에 따른 조경수목의 생장)

  • Lee, Deok-Beom;Nam, Woong;Kwak, Young-Se;Jeong, In-Ho;Lee, Sang-Suk
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.2
    • /
    • pp.114-123
    • /
    • 2009
  • To investigate the possible use of plants for landscaping in reclaimed soil, a planting pilot system experiment was performed over the course of four years in reclaimed dredging area with four species: Alnus firma, Alnus hirsuta, Pinus thunbergii, and Pyrachantha angustifolia for 4 years. The physicochemical characteristics of the tested soil showed that it was sandy through coming from a reclaimed dredging area. The average pH of the tested soil was 7.16(slight alkali), and electric conductivity(EC) was relatively low, $294{\mu}S/cm$, even though it came from a saltwater area. To test the effect of planting density vs. phytomass by plant specie from a planting basin, the experiment was designed using four plant species with high and low planting densities over 4 years. The planting conditions of the growth of landscape tree species exhibited growth height as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia, whill the DBH followed the order of A. hirsuta, A. firma, and P. thunbergii. The total phytomass of each plant was higher at low density planting areas than high density planting area in terms of total phytomass production and growth distribution in the reclaimed dredging area. Total phytomass per unit area increased as follows: A. hirsuta, A. firma, P. thunbergii, and P. angustifolia. The total phytomass per each tested plant was 2 times higher in low density planting areas than high density planting areas. Total phytomass per unit area, however, was similar or slighty higher in high density planting areas compared to low density areas. Among the tested plants, A. hirsuta showed the highest phytomass, implying that A. hirsuta adapted very well to the reclaimed area and has the capability of a fast growth, nitrogen fixation tree, and utilizing insoluble nutrients through inoculated root nodule bacteria. The yield of phytomass per individual in low density Alnus species was greater than that of the high density. However, those per unit areas had no difference in the density-dependent planting. The ratio of belowground to aboveground was $0.21{\sim}0.26$. Thus, it could be concluded that the Alnus species are potential candidates for ornamental tree species in reclaimed dredging areas. This study offers baseline data for the use of ornamental tree species in reclaimed dredging areas. Additional research is required for different ornamental species in order to increase phytomass of a planting conditions based on reclaimed dredging areas.

Changes in Growth and Yield of Different Rice Varieties under Different Planting Densities in Low-Density Transplanting Cultivation (벼 드문모심기 재식밀도에 따른 품종별 생육 및 수량 변이)

  • Yang, SeoYeong;Hwang, WoonHa;Jeong, JaeHyeok;Lee, HyeonSeok;Lee, ChungGeun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.279-288
    • /
    • 2021
  • Low-density transplanting is a cultivation technology that reduces labor and production costs. In this study, the growth and yield of several varieties with different tillering characteristics were analyzed in order to establish an appropriate planting density for low-density transplanting. Varieties with Low-Tillering (LT), Medium-Tillering (MT), and High-Tillering (HT) were planted at a density of 37-80 hills/3.3 m2. As the planting density decreased, the number of tillers per hill increased, but the number of tillers per square meter of hill decreased, especially for the LT variety. Decreasing density extended the tillering stage, which was longest in the LT variety. As the planting density decreased, SPAD(Soil plant analysis development, chlorophyll meter) values just before heading increased while canopy light interception decreased. Such changes were much greater in the LT variety than in the MT and HT varieties. The heading date tended to be delayed by 0-2 days as the planting density decreased, and there was no difference in the length of the period from first heading to full heading. As the number of spikelets per panicle increased, the number of spikelets per square meter did not differ according to the planting density. Decreasing planting density did not affect the grain weight; nevertheless, the yield ultimately decreased because of the decreasing ripening rate. The optimal planting density for stable low-density transplanting cultivation was determined to be over 50 hills/3.3 m2. In addition, these results suggest that LT varieties should be avoided, since these showed large decreases in growth and yield with decreasing planting density.

Effects of Planting Date and Density on Growth Characteristics and Saikosaponins Content in Bupleurum falcatum L. (파종시기 및 재식밀도가 시호의 생육 및 Saikosaponin 함량에 미치는 영향)

  • Lee, Ho;Kim, Kil-Ung;Son, Tae-Kwon;Lee, Sang-Chul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.10 no.5
    • /
    • pp.317-326
    • /
    • 2002
  • This study was conducted to determine the optimum planting dates and density of one year old Bupleurum falcatum L. to improve its productivity and quality. Two cultivars of B. falcatum, originated from Jeongseon, Korea and Mishima, Japan were used. Some of the results obtained are as follows : Jeongseon cultivar showed less stem branches and shoot weight compared to Mishima. However, Jeongseon cultivar showed tall plant height, high root fresh and dry weight, and high levels of saikosaponin, but low saikosaponin content than that of Mishima. Both cultivars seeded on March 20 had long main root, big stem diameter, few stem branch, and high saikosaponin c content compared to those of late seeded one, April 30. Growth characteristics such as plant height, stem diameter, stem branch number, shoot weight, root diameter, root fresh and dry weight, and root branch number were increased in a low planting $density(30\;{\times}\;15cm)$, but the content of saikosaponin was not affected by planting density. Jeongseon and Mishima cultivars seeded on April 10 with $30\;{\times}\;15cm$ planting density and April 30 with $30\;{\times}\;10cm$ planting density contained the highest total saikosaponin levels, respectively. However, average root dry weight were not affected by planting time or density in both Bupleurum cultivars.

Effects of Planting Date and Density by Drill Seeder on Growth and Yield of Black Soybeans (검정콩 기계조파시 파종시기와 밀도가 생육 및 수량에 미치는 영향)

  • Ju, Jung-Il;Kim, Chil-Hyun;Moon, Chang-Sik;Harm, Soo-Sang;In, Min-Sik;Chung, Kil-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.215-222
    • /
    • 1996
  • This study was conducted to compare the growth and yield, and to determine the optimum planting date and density in two improved black soybean varieties. The two varieties were planted by driller attached a tractor on May 21 and June 19, 1993, and treated five planting densities, respectively. Yield of Gumjeongkong 1 was similer for both planting dates, but that of Suwon 157 was remarkably reduced on June 19 planting compared to May 21. There was significant differences between planting dates in stem length, number of branches, seeds per plant, seed weight and yield. Planting density, also, significantly affected on stem length, number of branches and seeds per plant. Statistically significant interactions between planting date$\times$variety and planting date$\times$planting density were found at almost all characteristics, except between variety$\times$planting density. Optimum planting date and density of Gumjeongkong 1 for high yield were June 19 and 33, 000 plants per l0a, and those of Suwon 157 were May 21 and 22, 000 plants per l0a, respectively. The coefficient of variation at different planting densities was high at stem length, number of branches, seeds per plant and yield, but low at number of main stem node, seeds per pod and 100 seed weight.

  • PDF

Effect of Planting Densities on Growth and Yield of Fresh Waxy Corn as Second Crop (2기작재배시 후기작 재식밀도에 따른 식용 풋찰옥수수의 생육 및 수량)

  • 김은석;김수경;김대호;손범영;강동주;최진용;송근우
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.3
    • /
    • pp.190-194
    • /
    • 2000
  • Double cropping is important for increase of farm income and rate of arable land utilization. This study was carried out to obtain information for optimum plant density of the second crop in a double cropping system. A waxy corn hybrid, Chalok #2, was sown on July 10 at the first corn cropping site. Growth characteristics and yield response of fresh waxy corn were examined under different planting densities, which were 55.5, 66.6, 83.3, and 111.1 thousands plants ${ha}^{-1}$. Plant height was higher under high planting density than low planting density and 154cm at the 55.5 thousand plants ${ha}^{-1}$, and 168cm at the 111.1 thousand plant ${ha}^{-1}$. It showed same trends in ear height and gravity center height. But planting density did not affect root lodging and silking date. At the silking stage, stalk and leaf dry matter weight and leaf area index (LAI) were increased significantly with increasing planting density, Filled ear lengtg was shortened significantly under the hi임est planting density (111.1 thousand plants ${ha}^{-1}$), while ear length and ear diameter were no differences among planting densities. The number of marketable ears increased with increasing planting density, but husked fresh ear weight was the highest at 83.3 thousand plants ${ha}^{-1}$ with 11.2MT ${ha}^{-1}$and optimum planting density was estimated as about 80 thousand plants ${ha}^{-1}$.

  • PDF

Effect of the Planting Densities and Nitrogen Levels on the Growth Characteristics, Dry Matter Yield and Nutritive Value of Corn for Silage in Alpine Areas (고랭지에서 재식 밀도 및 질소 시비 수준이 사일리지용 옥수수의 생육특성, 건물수량 및 사료가치에 미치는 영향)

  • Lee Joung Kyong;Park Hyung Soo;Chung Jong Won;Kim Jong Geun;Lim Young Chul;Kim Young Geun;Lee Sung Chul;Jung Jae Rok;Sung Kyung Il
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.25 no.4
    • /
    • pp.239-244
    • /
    • 2005
  • This study was conducted to investigate the effect of the planting densities and nitrogen levels on the growth characteristics, dry matter yield and nutritive value of corn for silage in alpine area(altitude 800m a.s.1.) of National Livestock Research Institute from 2001 to 2002. The experiment was arranged in a split plot design with three replications. Main plots consisted of three planting densities, low(67,000 plants/ha), medium(89,000 plants/ha) and high(95,000 plants/ha). Sub plots consisted of three nitrogen levels, 150 kg/ha, 200 kg/ha, and 250 kg/ha. Tassel height of corn was increased with decreasing planting density, and nitrogen level of 200 kg/ha in all main plots. Ear height of corn was decreased with increasing planting density, and 150 kg/ha of three nitrogen levels. But there were no significant differences among treatment in tassel and ear height. Although dry matter ear ratio of whole com was increased with decreasing planting density, there were no significant differences among treatments. But there were significant differences among nitrogen levels(P<0.05). Dry matter yield of com was high with increasing planting density, but there were no significant differences among treatments. And DM yield of corn was significant difference among nitrogen levels(P<0.05). Crude protein content of corn was the highest with high planting density and low nitrogen level. NDF and ADF content of com was the highest with low planting density and nitrogen levels of 200 kg/ha in all main treatments. These results indicate that low planting density(67.000 plants/ha) and nitrogen of 150-200 kg/ha would be the optimum level fur dry matter yield and nutritive value of silage com in alpine area.

The Growth Performances of Fraxinus rhynchophylla According to Planting Density over Seven Years after Planting (식재밀도에 따른 물푸레나무 조림목 식재 후 7년간의 생장 특성)

  • Seung Hyun, Han;A-Ram, Yang;Nam Jin, Noh;Min Seok, Cho
    • Journal of Korean Society of Forest Science
    • /
    • v.111 no.4
    • /
    • pp.482-489
    • /
    • 2022
  • This study aimed to determine the optimal planting density of Fraxinus rhynchophylla assessed from the early growth performance at various planting densities over the 7-year period after planting. The study site was in Pyeongchang County, South Korea, and seedlings of 2-year-old (bare-root seedlings) F. rhynchophylla were planted at four densities (3,000, 5,000, 7,000, and 10,000 trees ha-1) in March 2015. The survival rate, root-collar diameter (RCD), and height (H) were measured from 2015 to 2021, and the H/D (H/RCD) ratio and stem volume were calculated. The survival rate (84-97%) and H/D ratio (54.5-59.2%) were not affected by the planting density during the study period, but the RCD, H, and stem volume were significantly higher for 7,000 trees ha-1 than for other planting densities. Especially, the stem volume (cm3 tree-1) at 7 years after planting was highest for 7,000 trees ha-1 (1,356.1), followed by 10,000 trees ha-1 (958.6), 5,000 trees ha-1 (773.0), and 3,000 trees ha-1 (579.5). As the planting density increased, F. rhynchophylla seedlings showed initial rapid growth due to light competition, but relatively low growth at excessive planting densities. In the future, use of a suitable planting density considering planting costs should provide outstanding growth performance of F. rhynchophylla on plantations.