Browse > Article
http://dx.doi.org/10.14578/jkfs.2022.111.4.482

The Growth Performances of Fraxinus rhynchophylla According to Planting Density over Seven Years after Planting  

Seung Hyun, Han (Forest Technology and Management Research Center, National Institute of Forest Science)
A-Ram, Yang (Global Forestry Division, National Institute of Forest Science)
Nam Jin, Noh (Department of Forest Resources, Kangwon National University)
Min Seok, Cho (Forest Technology and Management Research Center, National Institute of Forest Science)
Publication Information
Journal of Korean Society of Forest Science / v.111, no.4, 2022 , pp. 482-489 More about this Journal
Abstract
This study aimed to determine the optimal planting density of Fraxinus rhynchophylla assessed from the early growth performance at various planting densities over the 7-year period after planting. The study site was in Pyeongchang County, South Korea, and seedlings of 2-year-old (bare-root seedlings) F. rhynchophylla were planted at four densities (3,000, 5,000, 7,000, and 10,000 trees ha-1) in March 2015. The survival rate, root-collar diameter (RCD), and height (H) were measured from 2015 to 2021, and the H/D (H/RCD) ratio and stem volume were calculated. The survival rate (84-97%) and H/D ratio (54.5-59.2%) were not affected by the planting density during the study period, but the RCD, H, and stem volume were significantly higher for 7,000 trees ha-1 than for other planting densities. Especially, the stem volume (cm3 tree-1) at 7 years after planting was highest for 7,000 trees ha-1 (1,356.1), followed by 10,000 trees ha-1 (958.6), 5,000 trees ha-1 (773.0), and 3,000 trees ha-1 (579.5). As the planting density increased, F. rhynchophylla seedlings showed initial rapid growth due to light competition, but relatively low growth at excessive planting densities. In the future, use of a suitable planting density considering planting costs should provide outstanding growth performance of F. rhynchophylla on plantations.
Keywords
dense planting; forestation; Fraxinus rhynchophylla; planting density; survival rate;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Alcorn, P.J., Pyttel, P., Bauhus, J., Smith, R.G.B., Thomass, D., James, R. and Nicotra, A. 2007. Effects of initial planting density on branch development in 4-year-old plantation grown Eucalyptus pilularis and Eucalyptus cloeziana trees. Forest Ecology and Management 252(1-3): 41-51.   DOI
2 Arias-Aguilar, D. and Valverde, J.C. 2020. Effect of planting density and tree species selection on forest bioenergy systems: tree growth, nutrient storage and wood chemical properties. Greenhouse Gases 10(6): 1165-1175.   DOI
3 Bai, Y.F., Shen, Y.Y., Jin Y.D., Hong, Y., Liu, Y.Y., Li, Y.Q., Liu, R., Zhang, Z.W., Jiang, C.Q. and Wang, Y.J. 2020. Selective thinning and initial planting density management promote biomass and carbon storage in a chronosequence of evergreen conifer plantations in Southeast China. Global Ecology and Conservation 24: e01216.
4 Cho, M.S., Yang, A.R., Hwang, J., Park, B.B. and Park, G.S. 2021. Effects of growing density and cavity volume of containers on the nitrogen status of three deciduous hardwood species in the nursery stage. Journal of Korean Society of Forest Science 110(2): 198-209. (In Korean with English abstract)
5 Choi, C.H., Seo, B.S., Tak, W.S., Cho, K.J., Kim, C.S. and Han, S.U. 2008. Comparison of seed germination response to temperature by provenances in Freaxinus rhynchophylla. Journal of Korean Forest Society 97(6): 576-581. (In Korean with English abstract)
6 Dong, T., Zhang, Y., Zhang, Y. and Zhang, S. 2016. Continuous planting under a high density enhances the competition for nutrients among young Cunninghamia lanceolata saplings. Annals of Forest Scince 74(2016): 331-339.
7 Farooq, T.H., Wu, W., Tigabu, M., Ma, X., He, Z., Rashid, M.H.U., Gilani, M.M. and Wu, P. 2019. Growth, biomass production and root development of Chinese fir in relation to initial planting density. Forests 10(3): 236.
8 Grossnickle, S.C. 2012. Why seedlings survive: Influence of plant attributes. New Forests 43(5-6): 711-738.   DOI
9 Halbritter, A. and Deegen, P. 2015. A combined economic analysis of optimal planting density, thinning and rotation for an even-aged forest stand. Forest Policy and Economics 51: 38-46.   DOI
10 Iwasa, Y., Cohen, D. and Leon, J.A. 1984. Tree height and crown shape, as results of competitive games. Journal of Theorogical Biology 112(2): 279-297.   DOI
11 Jeong, J.H., Koo, K.S., Lee, C.H. and Kim, C.S. 2002. Physio-chemical properties of Korean forest soils by regions. Journal of Korean Forestry Society 91(6): 694-700.
12 Kang, H.S. 2013. Effects of root pruning, stem cutting and planting density on survival and growth characteristics in Kalopanax septemlobus seedlings. Journal of the Korea Society of Environmental Restoration Technology 16(3): 97-105. (In Korean with English abstract)   DOI
13 KFS (Korea Forest Service). 2021. Statistical yearbook of forestry. Korea Forest Service, Republic of Korea. pp. 226. (in Korean)
14 Kim, G.T. 2003. Ecological forest management and reforestation problem. Korean Journal of Environmental Ecology 17(2): 105-111. (In Korean with English abstract)   DOI
15 KMA (Korea Meteorological Administration). 2021. Climatological normals of Korea. Korea Meteorological Administration, Republic of Korea. pp. 984. (in Korean)
16 Peracca, G.G. and O'Hara, K.L. 2008. Effects of growing space on growth for 20-year-old giant sequoia, ponderosa pine, and Douglas-fir in the Sierra Nevada. Western Journal of Applied Forestry 23(3): 156-165.   DOI
17 NAS (National Institute of Agricultural Sciences). 2010. Methods of soil chemical analysis. Rural Development Administration, Republic of Korea. (in Korean)
18 Newton, M., Lachenbruch, B., Robbins, J.M. and Cole, E.C. 2012. Branch diameter and longevity linked to plantation spacing and rectangularity in young Douglas-fir. Forest Ecology and Management 266: 75-82.
19 Noh, N.J., Kwon, B., Yang, A.R. and Cho, M.S. 2020. Effect of planting density on early growth performances of Zelkova serrata trees. Journal of Korean Society of Forest Science 109(3): 281-290. (In Korean with English abstract)
20 Peterson, J. 1996. Growing environment and container type influence field performance of black spruce container stock. New Forests 13: 325-335.
21 Pinto, J.R., Marshall, J.D., Dumroese, R.K., Davis, A.S. and Cobos, D.R. 2011. Establishment and growth of container seedlings for reforestation: A function of stocktype and edaphic conditions. Forest Ecology and Management 261(11): 1876-1884.   DOI
22 Han, S.H., Kim, J.H., Kang, W.S., Hwang, J.H., Park, K.H. and Kim, C.B. 2019. Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge. Korean Journal of Environmental Ecology 33(4): 453-461. (in Korean with English abstract)   DOI
23 Hidaka, A. and Kitayama, K. 2009. Divergent patterns of photosynthetic phosphorus-use efficiency versus nitrogen-use efficiency of tree leaves along nutrient-availability gradients. Journal of Ecology 97(5): 984-991.   DOI
24 Han, S.H., Byun, J.K., Cho, M.S., An, J.Y., Park, G.S., Kim, S.B. and Park, B.B. 2016. The effect of 7 fertilizers on the growth and nutrient concentrations of Freaxinus rhynchophylla, Fraxinus mandshurica, Pinus koreaiensis, and Abies holophylla seedlings. Journal of Korean Forest Society 105(2): 177-185. (In Korean with English abstract)   DOI
25 Toillon, J., Fichot, R., Dalle, E., Berthelot, A. and Brignolas, F. 2013. Planting density affects growth and water-use efficiency depending on site in Populus deltoides × P. nigra. Forest Ecology and Management 304: 345-354.   DOI
26 Tun, T.N., Guo, J., Fang, S. and Tian, Y. 2018. Planting spacing affects canopy structure, biomass production and stem roundness in poplar plantations. Scandinavian Journal of Forest Research 33(5): 464-474.   DOI
27 Van de Peer, T., Verheyen, K., Kint, V., Van Cleemput, E. and Muys, B. 2017. Plasticity of tree architecture through interspecific and intraspecific competition in a young experimental plantation. Forest Ecology and Management 385: 1-9.   DOI
28 Hakamada, R., Hubbard, R.M., Ferraz, S., Stape, J.L. and Lemos, C. 2017. Biomass production and potential water stress increase with planting density in four highly productive clonal Eucalyptus genotypes. Southern Forests : a Jounral of Forest Science 79(3): 251-257.   DOI
29 Villar-Salvador, P., Uscola, M. and Jacobs, D.F. 2015. The role of stored carbohydrates and nitrogen in the growth and stress tolerance of planted forest trees. New Forests 46(5): 813-839.   DOI
30 Wang, C.S., Tang, T., Hein, S., Guo, J.J., Zhao, Z.G. and Zeng, J. 2018. Branch development of five-year-old Betula alnoides plantations in response to planting density. Forests 9(1): 42.
31 Yan, Z., Zhou, Q., Teng, M., Ji, H., Zhang, J., He, W., Ye, Y., Wang, B. and Wang, P. 2019. High planting density and leaf area index of masson pine forest reduce crown transmittance of photosynthetically active radiation. Global Ecology and Conservation 20: e00759.
32 Wang, C.S., Zhao, Z.G., Hein, S., Zeng, J., Schuler, J., Guo, J.J., Guo, W.F. and Zeng, J. 2015. Effect of planting density on knot attributes and branch occlusion of Betula alnoides under natural pruning in southern China. Forests 6(4): 1343-1361.   DOI
33 Will, R., Hennessey, T., Lynch, T., Holeman, R. and Heinemann, R. 2010. Effects of planting density and seed source on loblolly pine stands in southeastern Oklahoma. Forest Science 56(5): 437-443.
34 Xue, L., Pan, L., Zhang, R. and Xu, P. 2011. Density effects on the growth of self-thinning Eucalyptus urophylla stands. Trees 25(6): 1021-1031.   DOI
35 Yang, A-R. and Cho, M.S. 2019. The growth performances and soil properties of planted Zelkova serrata trees according to fertilization in harvested Pinus rigida plantation over 6 years after planting. Journal of Korean Society of Forest Science 108(1): 29-39. (In Korean with English abstract)
36 You, J.W., Won, H.K., Han, H. and Kim, H.S. 2020. A comparative analysis of management efficiency between natural regeneration and plantation. Korean Forest Economics Society 27(2): 85-91. (In Korean with English abstract)   DOI
37 Zhang, Y., Duan, B., Qiao, Y., Wang, K., Korpelainen, H. and Li, C. 2008. Leaf photosynthesis of Betula albosinensis seedlings as affected by elevated CO2 and planting density. Forest Ecology and Management 255(5-6): 1937-1944.   DOI