• Title/Summary/Keyword: Low Computational Complexity

Search Result 488, Processing Time 0.036 seconds

Scalable Video Coding with Low Complex Wavelet Transform (공간 웨이블릿 변환의 복잡도를 줄인 스케일러블 비디오 부호화에 관한 연구)

  • Park Seong-Ho;Jeong Se-Yoon;Kim Won-Ha
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.53-62
    • /
    • 2005
  • In the decoding process of interframe Wavelet coding, the Wavelet transform requires huge computational complexity. Since the decoder may need to be used in various devices such as PDAs, notebooks, or PC, the decoder's complexity should be adapted to the processor's computational power. So, it is natural that the low complexity codec is also required for scalable video coding. In this paper, we develop a method of controlling and lowering the complexity of the spatial Wavelet transform while sustaining the same coding efficiency as the conventional spatial Wavelet transform. In addition, the proposed method may alleviate the ringing effect for slowly changing image sequences.

Low-Complexity MIMO Detection Algorithm with Adaptive Interference Mitigation in DL MU-MIMO Systems with Quantization Error

  • Park, Jangyong;Kim, Minjoon;Kim, Hyunsub;Jung, Yunho;Kim, Jaeseok
    • Journal of Communications and Networks
    • /
    • v.18 no.2
    • /
    • pp.210-217
    • /
    • 2016
  • In this paper, we propose a low complexity multiple-input multiple-output (MIMO) detection algorithm with adaptive interference mitigation in downlink multiuser MIMO (DL MU-MIMO) systems with quantization error of the channel state information (CSI) feedback. In DL MU-MIMO systems using the imperfect precoding matrix caused by quantization error of the CSI feedback, the station receives the desired signal as well as the residual interference signal. Therefore, a complexMIMO detection algorithm with interference mitigation is required for mitigating the residual interference. To reduce the computational complexity, we propose a MIMO detection algorithm with adaptive interference mitigation. The proposed algorithm adaptively mitigates the residual interference by using the maximum likelihood detection (MLD) error criterion (MEC). We derive a theoretical MEC by using the MLD error condition and a practical MEC by approximating the theoretical MEC. In conclusion, the proposed algorithm adaptively performs interference mitigation when satisfying the practical MEC. Simulation results show that the proposed algorithm reduces the computational complexity and has the same performance, compared to the generalized sphere decoder, which always performs interference mitigation.

A Low-complexity Mixed QR Decomposition Architecture for MIMO Detector (MIMO 검출기에 적용 가능한 저 복잡도 복합 QR 분해 구조)

  • Shin, Dongyeob;Kim, Chulwoo;Park, Jongsun
    • Journal of IKEEE
    • /
    • v.18 no.1
    • /
    • pp.165-171
    • /
    • 2014
  • This paper presents a low complexity QR decomposition (QRD) architecture for MIMO detector. In the proposed approach, various CORDIC-based QRD algorithms are efficiently combined together to reduce the computational complexity of the QRD hardware. Based on the computational complexity analysis on various QRD algorithms, a low complexity approach is selected at each stage of QRD process. The proposed QRD architecture can be applied to any arbitrary dimension of channel matrix, and the complexity reduction grows with the increasing matrix dimension. Our QR decomposition hardware was implemented using Samsung $0.13{\mu}m$ technology. The numerical results show that the proposed architecture achieves 47% increase in the QAR (QRD Rate/Gate count) with 28.1% power savings over the conventional Householder CORDIC-based architecture for the $4{\times}4$ matrix decomposition.

Intra-picture Block-matching Method for Codebook-based Texture Compression

  • Cui, Li;Jang, Euee S.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.5063-5073
    • /
    • 2016
  • In this paper, an efficient texture compression method is proposed for fast rendering, which exploits the spatial correlation among blocks through intra-picture block matching. Texture mapping is widely used to enhance the visual quality of results in real-time rendering applications. For fast texture mapping, it is necessary to identify an effective trade-off between compression efficiency and computational complexity. The conventional compression methods utilized for image processing (e.g., JPEG) provide high compression efficiency while resulting in high complexity. Thus, low complexity methods, such as ETC1, are often used in real-time rendering applications. Although these methods can achieve low complexity, the compression efficiency is still lower than that of JPEG. To solve this problem, we propose a texture compression method by reducing the spatial redundancy between blocks in order to achieve the better compression performance than ETC1 while maintaining complexity that is lower than that of JPEG. Experimental results show that the proposed method achieves better compression efficiency than ETC1, and the decoding time is significantly reduced compared to JPEG while similar to ETC1.

Low Complexity Motion Estimation Search Method for Multi-view Video Coding (다시점 비디오 부호화를 위한 저 복잡도 움직임 추정 탐색 기법)

  • Yoon, Hyo-Sun;Kim, Mi-Young
    • Journal of Korea Multimedia Society
    • /
    • v.16 no.5
    • /
    • pp.539-548
    • /
    • 2013
  • Although Motion estimation (ME) plays an important role in digital video compression, it requires a complicated search procedure to find an optimal motion vector. Multi-view video is obtained by capturing one three-dimensional scene with many cameras at different positions. The computational complexity of motion estimation for Multi-view video coding increases in proportion to the number of cameras. To reduce computational complexity and maintain the image quality, a low complexity motion estimation search method is proposed in this paper. The proposed search method consists of four-grid diamond search patten, two-gird diamond search pattern and TZ 2 Point search pattern. These search patterns exploit the characteristics of the distribution of motion vectors to place the search points. Experiment results show that the speedup improvement of the proposed method over TZ search method (JMVC) can be up to 1.8~4.5 times faster by reducing the computational complexity and the image quality degradation is about to 0.01~0.24 (dB).

A Low-Complexity 2-D MMSE Channel Estimation for OFDM Systems (OFDM 시스템을 위한 낮은 복잡도를 갖는 2-D MMSE 채널 추정 기법)

  • Kim, Jung-In;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.5C
    • /
    • pp.317-325
    • /
    • 2011
  • For OFDM (Orthogonal Frequency Division Multiplexing) systems, 2-D MMSE (2-Dimensional Minimum Mean Square Error) channel estimation provides optimal performance in frequency/time selective fading channel environment. However, the 2-D MMSE channel estimation has high computational complexity due to the large matrix size, because the 2-D MMSE channel estimation considers time as well as frequency axis for channel estimation. To reduce the computational complexity, we propose a modified 2-D MMSE channel estimator which is based on 1-D MMSE channel estimation with weighted sum. Furthermore, we consider RMS delay spread and Doppler frequency estimation for 2-D MMSE channel estimation. We show that the proposed method can significantly reduce computational complexity as well as that it can perform close to 2-D MMSE channel estimation.

Video Quality Minimizing Method Using Feedback Information (피드백을 이용한 영상 품질 변화 최소화 방법)

  • Park, Sang-Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.10a
    • /
    • pp.332-335
    • /
    • 2007
  • A real-time frame-layer rate control algorithm with a transmission buffer is proposed for minimizing video quality variation. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reflect the buffer status, we use well-known PID control method. Computational complexity of PID control is very low, so the proposed algorithm is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

  • PDF

Iterative Reliability-Based Modified Majority-Logic Decoding for Structured Binary LDPC Codes

  • Chen, Haiqiang;Luo, Lingshan;Sun, Youming;Li, Xiangcheng;Wan, Haibin;Luo, Liping;Qin, Tuanfa
    • Journal of Communications and Networks
    • /
    • v.17 no.4
    • /
    • pp.339-345
    • /
    • 2015
  • In this paper, we present an iterative reliability-based modified majority-logic decoding algorithm for two classes of structured low-density parity-check codes. Different from the conventional modified one-step majority-logic decoding algorithms, we design a turbo-like iterative strategy to recover the performance degradation caused by the simply flipping operation. The main computational loads of the presented algorithm include only binary logic and integer operations, resulting in low decoding complexity. Furthermore, by introducing the iterative set, a very small proportion (less than 6%) of variable nodes are involved in the reliability updating process, which can further reduce the computational complexity. Simulation results show that, combined with the factor correction technique and a well-designed non-uniform quantization scheme, the presented algorithm can achieve a significant performance improvement and a fast decoding speed, even with very small quantization levels (3-4 bits resolution). The presented algorithm provides a candidate for trade-offs between performance and complexity.

Video Quality Variation Minimizing Method using PID Controller (PID 제어기를 이용한 영상 품질 변화 최소화 방법)

  • Park, Sang-Hyun;Kang, Eui-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2009-2014
    • /
    • 2007
  • A novel method of minimizing video quality variation is proposed for a real-time frame-layer rate control algorithm with a transmission buffer. The proposed rate control method uses a non-iterative optimization method for low computational complexity, and performs bit allocation at the frame level to minimize variation in distortion between frames. In order to reflect the buffer status, we use well-known PID control method. Computational complexity of PID control is very low, so the proposed algorithm is suitable for real-time low-complexity video encoder. Experimental results indicate that the proposed control method provides better PSNR performance than the existing rate control method.

A Low Complexity Multi-level Sphere Decoder for MIMO Systems with QAM signals

  • Pham, Van-Su;Yoon, Gi-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.890-893
    • /
    • 2008
  • In this paper, we present a low complexity modified multi-level sphere decoder (SD) for multiple-input multiple-output (MIMO) systems employing quadrature amplitude modulation (QAM) signals. The proposed decoder, exploiting the multi-level structure of the QAM signal scheme, first decomposes the high-level constellation into low-level 4-QAM constellations, so-called sub-constellations. Then, it deploys SD in the sub-constellations in parallel. In addition, in the searching stage, it uses the optimal low-complexity sort method. Computer simulation results show that the proposed decoder can provide near optimal maximum-likelihood (ML) performance while it significantly reduces the computational load.

  • PDF