DOI QR코드

DOI QR Code

A Low-complexity Mixed QR Decomposition Architecture for MIMO Detector

MIMO 검출기에 적용 가능한 저 복잡도 복합 QR 분해 구조

  • Received : 2014.03.14
  • Accepted : 2014.03.24
  • Published : 2014.03.31

Abstract

This paper presents a low complexity QR decomposition (QRD) architecture for MIMO detector. In the proposed approach, various CORDIC-based QRD algorithms are efficiently combined together to reduce the computational complexity of the QRD hardware. Based on the computational complexity analysis on various QRD algorithms, a low complexity approach is selected at each stage of QRD process. The proposed QRD architecture can be applied to any arbitrary dimension of channel matrix, and the complexity reduction grows with the increasing matrix dimension. Our QR decomposition hardware was implemented using Samsung $0.13{\mu}m$ technology. The numerical results show that the proposed architecture achieves 47% increase in the QAR (QRD Rate/Gate count) with 28.1% power savings over the conventional Householder CORDIC-based architecture for the $4{\times}4$ matrix decomposition.

본 논문에서는 MIMO 검출기를 위한 저 복잡도 QR 분해 구조를 제시한다. 제안된 접근 방식에서는, QRD 하드웨어의 연산 복잡도를 감소시키기 위해 다양한 코딕 기반 QRD 알고리즘들이 효율적으로 조합된다. 다양한 QRD 알고리즘들에 대한 연산 복잡도 분석에 기초하여, QRD 과정의 매 단계마다 저 복잡도 접근 방식이 선택된다. 제안된 QRD 구조는 어떤 임의의 차원을 갖는 채널 매트릭스에도 적용 될 수 있고, 매트릭스 차원의 증가에 따라 연산 복잡도 감소도 늘어난다. 제안하는 QR 분해 하드웨어는 삼성 $0.13{\mu}m$ 공정을 사용하여 구현되었다. 실험결과, $4{\times}4$ 행렬의 QR 분해에 대한 제안 구조는 기존의 Householder 코딕 기반의 구조에 비해 47%의 QAR(QRD Rate/Gate count) 향상과 28%의 전력을 절감을 이뤄낼 수 있었다.

Keywords

References

  1. Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Enhancements for Very High Throughput for Operation in Bands Below 6GHz, IEEE P802.11ac/D 1.0 Standard, Jan. 2011.
  2. S. Haykin, Communication Systems, 4th ed. New York: Wiley, 2000.
  3. M. Shabany, P. Gulak, "A 675 Mbps, 4x4 64-QAM K-Best MIMO Detector in 0.13 um CMOS," IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol. 20, no. 1, Jan. 2012.
  4. M. Lei, K. Dickson, J. McAllister, and J. Mc Canny, "QR decomposition-based matrix inversion for high performance embedded mimo receivers," Signal Processing, IEEE Transactions on, vol. 59, no. 4, pp. 1858-1867, 2011. https://doi.org/10.1109/TSP.2011.2105485
  5. P. K. Meher, J. Valls, J. Tso-Bing, K. Sridharan, and K. Maharatna, "50 years of cordic: Algorithms, architectures, and applications," Circuits and Systems I: Regular Papers, IEEE Transactions on, vol. 56, no. 9, pp. 1893-1907, 2009. https://doi.org/10.1109/TCSI.2009.2025803
  6. P. Luethi, A. Burg, S. Haene, D. Perels, N. Felber, and W. Fichtner, "VLSI Implementation of a High-Speed Iterative Sorted MMSE QR Decomposition," in Proc. IEEE ISCAS 2007, pp. 1421-1424, May 2007.
  7. Min-Woo Lee, Ji-Hwan Yoon, and Jongsun Park, "High-Speed Tournament Givens Rotation-based QR Decomposition Architecture for MIMO Receiver," in Circuit and Systems (ISCAS), 2012 IEEE international Symposium on, May 2012.
  8. Z. Huang, P. Tsai, "Efficient Implementation of QR Decomposition for Gigabit MIMO-OFDM Systems," Circuits and Systems I: Regular Papers, IEEE Transactions on , vol.58, no.10, pp.2531-2542, Oct. 2011. https://doi.org/10.1109/TCSI.2011.2123770
  9. J. Delosme and S. Hsiao, "Householder CORDIC algorithms," IEEE Trans. Comput., vol. 44, no. 8, pp. 990-1001, Aug. 1995. https://doi.org/10.1109/12.403715
  10. Kurniawan. I. H., Ji-Hwan Yoon, and Jongsun Park, "Multidimensional Householder based high-speed QR decomposition architecture for MIMO receivers," in Circuit and Systems (ISCAS), 2013 IEEE international Symposium on, May 2013.
  11. S. Hisao, J. Delosme, Multi-dimensional CORDIC algorithms, 1993.
  12. Jae-Woong Han, Young-Beom Jang, "A Residual Frequency Offset Synchronization Scheme Using a Simplified CORDIC Algorithm in OFDM Systems," CommunicationsTheoryWorkshop,2009.AusCTW2 009.Australian , vol., no., pp.67,70, 4-7 Feb. 2009.
  13. C. Wu, A. Wu, "Modified vector rotational CORDIC (MVR-CORDIC) algorithm and architecture," CircuitsandSystemsII: Analog and Digital Signal Processing, IEEE Transactions on , vol.48, no.6, pp.548,561, Jun 2001.
  14. Synopsys PrimeTime User's Manual, http://www.synopsys.com

Cited by

  1. Performances of Various AGC Algorithms for IEEE802.11p WAVE vol.18, pp.4, 2014, https://doi.org/10.7471/ikeee.2014.18.4.502
  2. Decision Feedback Based Diversity Modem for IEEE802.11p WAVE vol.19, pp.3, 2015, https://doi.org/10.7471/ikeee.2015.19.3.400
  3. Diversity modem for IEEE802.11p WAVE vol.18, pp.4, 2014, https://doi.org/10.7471/ikeee.2014.18.4.495