• Title/Summary/Keyword: Low Alloy

Search Result 1,527, Processing Time 0.027 seconds

A Study on the Performance Improvement of ta-C Thin Films Coating on Tungsten Carbide(WC) Surface for Aspherical Glass Lens by FCVA Method Compared with Ir-Re coating (Ir-RE 코팅 대비 자장여과필터방식을 이용한 비구면 유리 렌즈용 초경합금(WC)표면의 ta-C 박막 코팅 성능 개선 연구)

  • Jung, Kyung-Seo;Kim, Seung-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.27-36
    • /
    • 2019
  • The demand for a low dispersion lens with a small refractive index and a high refractive index is increasing, and accordingly, there is an increasing need for a releasable protective film with high heat resistance and abrasion resistance. On the other hand, the optical industry has not yet established a clear standard for the manufacturing process and quality standards for mold-releasing protective films used in aspheric glass lens molding. Optical lens manufacturers treat this technology as proprietary information. In this study, an experiment was conducted regarding the optimization of ion etching, magnetron, and arc current at each source and filter part, and bias voltage in FCVA (filtered cathode vacuum arc)-based Ta-C thin film coatings. This study found that compared to iridium-rhenium alloy thin film sputtering products, the coating conditions were improved by approximately 50%, 20%, and 40% in terms of thickness, hardness, and adhesive strength of the film, respectively. The thin-film coating process proposed in this study is expected to contribute significantly to the development and utilization of glass lenses, which will help enhance the minimum mechanical properties and quality of the mold-release thin film layer required for glass mold surface forming technology.

Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate (Sn-58Bi 솔더 페이스트와 ENIG 표면 처리된 기판 접합부의 계면 반응 및 접합강도)

  • Shin, Hyun-Pil;Ahn, Byung-Wook;Ahn, Jee-Hyuk;Lee, Jong-Gun;Kim, Kwang-Seok;Kim, Duk-Hyun;Jung, Seung-Boo
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.64-69
    • /
    • 2012
  • Sn-Bi eutectic alloy has been widely used as one of the key solder materials for step soldering at low temperature. The Sn-58Bi solder paste containing chloride flux was adopted to compare with that using the chloride-free flux. The paste was applied on the electroless nickel-immersion gold (ENIG) surface finish by stencil printing, and the reflow process was then performed at $170^{\circ}C$ for 10 min. After reflow, the solder joints were aged at $125^{\circ}C$ for 100, 200, 300, 500 and 1000 h in an oven. The interfacial microstructures were obtained by using scanning electron microscopy (SEM), and the composition of intermetallic compounds (IMCs) was analyzed using energy dispersive spectrometer (EDS). Two different IMC layers, consisting of $Ni_3Sn_4$ and relatively very thin Sn-Bi-Ni-Au were formed at the solder/surface finish interface, and their thickness increased with increasing aging time. The wettability of solder joints was investigated by wetting balance test. The mechanical property of each aging solder joint was evaluated by the ball shear test in accordance with JEDEC standard (JESD22-B117A). The results show that the highest shear force was measured when the aging time was 100 h, and the fracture mode changed from ductile fracture to brittle fracture with increasing aging time. On the other hand, the chloride flux in the solder paste did not affect the shear force and fracture mode of the solder joints.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

EFFECTS OF TITANIUM SURFACE COATING ON CERAMIC ADHESION (타이타늄 표면 코팅이 도재 결합에 미치는 영향)

  • Kim, Yeon-Mi;Kim, Hyun-Seung;Lee, Kwang-Min;Lee, Doh-Jae;Oh, Gye-Jeong;Lim, Hyun-Pil;Seo, Yoon-Jung;Park, Sang-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.5
    • /
    • pp.601-610
    • /
    • 2007
  • Statement of problem: The adhesion between titanium and ceramic is less optimal than conventional metal-ceramic bonding, due to reaction layer form on cast titanium surface during porcelain firing. Purpose: This study characterized the effect of titanium-ceramic adhesion after gold and TiN coating on cast and wrought titanium substrates. Material and method: Six groups of ASTM grade II commercially pure titanium and cast titanium specimens$(13mm{\times}13mm{\times}1mm)$ were prepared(n=8). The conventional Au-Pd-In alloy served as the control. All specimens were sandblasted with $110{\mu}m\;Al_2O_3$ particles and ultrasonically cleaned for 5min in deionized water and dried in air before porcelain firing. An ultra-low-fusing dental porcelain (Vita Titankeramik) was fused on titanium surfaces. Porcelain was debonded by a biaxial flexure test at a cross head speed of 0.25mm/min. The excellent titanium-ceramic adherence was exhibited by the presence of a dentin porcelain layer on the specimen surface after the biaxial flexure test. Area fraction of adherent porcelain (AFAP) was determined by SEM/EDS. Numerical results were statistically analyzed by one-way ANOVA and Student-Newman-Keuls test at ${\alpha}=0.05$. Results: The AFAP value of cast titanium was greatest in the group 2 with TiN coating, followed by group 1 with Au coating and the group 3 with $Al_2O_3$ sandblasting. Significant statistical difference was found between the group 1, 2 and the group 3 (p<.05). The AFAP value of wrought titanium was greatest in the group 5 with TiN coating, followed by the group 4 with Au coating and the group 6 with $Al_2O_3$ sandblasting. Conclusion: No significant difference was observed among the three groups (p>.05). The AFAP values of the cast titanium and the wrought titanium were similar. However the group treated with $Al_2O_3$ sandblasting showed significantly lower value (p<.05).

Complex Permeability of 0-3 Polymer Magnetic Composites for Near-Field Communication (근역장 통신용 0-3형 고분자 자성 복합소재의 복소투자율 변화)

  • Nam, Joong-Hee;Lim, Choong Hyuck;Yun, Ji Sun;Jeong, Young-Hun;Cho, Jeong-Ho;Paik, Jong Hoo;Kim, Hyo Tae;Kim, Jong-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.6
    • /
    • pp.216-220
    • /
    • 2012
  • Magnetic properties of composite materials consisting of polymer filled with ferromagnetic powders (MnZn ferrite, Fe-Si alloy) were investigated in this study. The volume fraction of magnetic powders as fillers was varied from 70 % to 95 %. This paper presents the fabrication method of polymer magnetic composites in an effort to produce the 0-3 types of MnZn ferrite and FeSi as fillers with a proper complex permeability through the optimization of some experimental parameters. The polymer matrix composites were prepared by mixing the crushed ferrites and flaky FeSi powders homogenously with low-density resins (EPDM, epoxy). The relationships among the manufacturing technology of these materials, their filler volume fraction, as well as their complex permeability were measured and analyzed.

A Study on the Manufacturing Technique by Scientific Analysis and Reproduction Experiment of Ancient Silver Objects Excavated from Neungnae-ri, Ganghwa Island (강화도 능내리출토 은제유물의 과학적 분석 및 재현실험을 통한 제작기법 연구)

  • Ryu, Dong-Wan;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.27 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • For the silver artifacts in the Koryo Dynasty excavated from Neungnae-ri Ganghwa island, the metallographic section analysis and hardness and chemical analysis were conducted. After making samples in the similar ratio of the composition concentration, the changes of the microstructure were checked according to the working method and temperature. The results show that those silver artifacts are Au-Cu alloys with 2 to 6 % of Cu. From the results it is judged that Cu was artificially alloyed with them to keep the proper hardness and identified that they were gilded by the amalgamation process seeing that mercury was included at the guilt layer. Also the porous texture on the surface of them could be formed at over $400^{\circ}C$, therefore, it is assumed the hot working or heat treatment at over $400^{\circ}C$ were performed. In silver artifacts made by the relief and repousse, they have the similar composition analysis to other 7 artifacts but the hardness is lower than pure silver. Consequently from differences in the hardness, it can be inferred that the low hardness of silver artifacts is concerned with manufacturing techniques.

Fabrication and characterization of Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu alloys (Sn-3.0Ag-0.5Cu, Sn-0.7Cu 및 Sn-0.3Ag-0.5Cu 합금의 제조 및 특성평가)

  • Lee, Jung-Il;Paeng, Jong Min;Cho, Hyun Su;Yang, Su Min;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.3
    • /
    • pp.130-134
    • /
    • 2018
  • In the past few years, various solder compositions have been a representative material to electronic packages and surface mount technology industries as a replacement of Pb-base solder alloy. Therefore, extensive studies on process and/or reliability related with the low Ag composition have been reported because of recent rapid rise in Ag price. In this study, Sn-3.0Ag-0.5Cu, Sn-0.7Cu and Sn-0.3Ag-0.5Cu solder bar samples were fabricated by melting of Sn, Ag and Cu metal powders. Crystal structure and element concentration were analyzed by XRD, XRF, optical microscope, FE-SEM and EDS. The fabricated solder samples were composed of ${\beta}-Sn$, ${\varepsilon}-Ag_3Sn$ and ${\eta}-Cu_6Sn_5$ phases.

High Alloying Degree of Carbon Supported Pt-Ru Alloy Nanoparticles Applying Anhydrous Ethanol as a Solvent

  • Choi, Kwang-Hyun;Lee, Kug-Seung;Jeon, Tae-Yeol;Park, Hee-Young;Jung, Nam-Gee;Chung, Young-Hoon;Sung, Yung-Eun
    • Journal of Electrochemical Science and Technology
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 2010
  • Alloying degree is an important structural factor of PtRu catalysts for direct methanol fuel cells (DMFC). In this work, carbon supported PtRu catalysts were synthesized by reduction method using anhydrous ethanol as a solvent and $NaBH_4$ as a reducing agent. Using anhydrous ethanol as a solvent resulted in high alloying degree and good dispersion. The morphological structure and crystallanity of synthesized catalysts were characterized by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM). CO stripping and methanol oxidation reaction were measured. Due to high alloying degree catalyst prepared in anhydrous ethanol, exhibited low onset potential for methanol oxidation and negative peak shift of CO oxidation than commercial sample. Consequently, samples, applying ethanol as a solvent, exhibited not only enhanced CO oxidation, but also increased methanol oxidation reaction (MOR) activity compared with commercial PtRu/C (40 wt%, E-tek) and 40 wt% PtRu/C prepared in water solution.

Evaluation of Hydrogen Properties on Mg2NiHx-Graphene Composites by Mechanical Alloying (기계적 합금화법으로 제조한 Mg2NiHx-Graphene 복합재료의 수소화 특성 평가)

  • Lee, Young-Sang;Lee, Soo-Sun;Lee, Byung-Ha;Jung, Seok;Hong, Tae-Whan
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.1
    • /
    • pp.19-27
    • /
    • 2014
  • Mg hydride has a high hydrogen capacity (7.6%), at high temperature, and is a lightweight and low cost material, thus it a promising hydrogen storage material. However, its high operation temperature and very slow reaction kinetics are obstacles to practical application. In order to overcome these disadvantages of Mg hydride, graphene powder was added to it. The addition of graphene has been shown to reduce the operating temperature of dehydrogenation. Moreover, in this report the environmental aspects of $MgH_x$-Graphene composites are investigated by means of the environmental life cycle assessment (LCA) method. $MgH_x$-Graphene mixture was prepared by hydrogen induced mechanical alloy (HIMA). The synthesized powder was characterized by XRD(X-ray Diffraction). The hydrogenation behaviors were evaluated by using a Sievert's type automatic PCT apparatus. Such evaluation of Materials also conducted in the LCA. From the result of P-C-T(Pressure-Composition-Temperature) curves, the $MgH_x$-3wt.% graphene composite was evaluated as having a 5.86wt.% maximum hydrogen storage capacity, at 523K. From absorption kinetic testing, the $MgH_x$-7wt.% graphene composite was evaluated as having a maximum 6.94wt.%/ms hydrogen absorption rate, at 573K. Environment evaluation results for the $MgH_x$-graphene composites and other materials indicated environmental impact from the electric power used and from the materials themselves.

Distributions of Hyperfine Parameters in Amorphous $Fe_{83}B_9Nb_7Cu_1$ Alloys (비정질 $Fe_{83}B_9Nb_7Cu_1$의 M$\)

  • 윤성현;김성백;김철성
    • Journal of the Korean Magnetics Society
    • /
    • v.9 no.6
    • /
    • pp.271-277
    • /
    • 1999
  • Amorphous $Fe_{83}B_9Nb_7Cu_1$ alloy has been studied by M$\"{o}$ssbauer spectroscopy. Revised Vincze method was used and distributions of hyperfine field, isomer shift, and quadrupole line broadening of the sample at various temperatures have been evaluated and Curie temperature and $H_{hf}\;(0)$ were calculated to be 393 K and 231 kOe, respectively. Temperature variation of reduced average hyperfine field shows a flattered curvein comparison with the Brillouin curve for S=1. This behavior can be explained on the basis of Handrich molecular field model, in which the parameter Δ, which is a measure of fluctuation in exchange interactions, is assumed to have the temperature dependence ${Delta}=0.75-0.64{\tau}+0.47{\tau}^2$ where $\tau$ is $T/T_C$. At low temperature, the average hyperfine field can be fitted to $H_{hf}\;(T)=H_{hf}\;(0)\;[1-0.44\;(T/T_C)^{3/2}-0.28(T/T_C)^{5/2}-… ]$, which indicates the presence long wave length spin wave excitations. At temperature near TC, reduced average hyperfine field varies as $1.00\;[1-T/T_C]^{0.39}$. It is also found that half-width of the hyperfine field distribution was 102 kOe (3.29 mm/s) at 13 K and decreased monotonically as temperature increased. Above the Curie temperature, an average quadrupole splitting value of 0.43 mm/s was found. Average line broadening due to quadrupole splitting distribution was 0.31 mm/s at 13 K and decreases monotonically to 0.23 mm/s at 320 K, whereas that due to the isomer shift distribution is 0.1 mm/s at 13 K and 0.072 mm/s at 320 K, which is much smaller than that of both hyperfine field and quadrupole splitting. The temperature dependence of the isomer shift can be fitted within the harmonic approximation to a Deybe model with a Debye temperature ${Theta}_D=424{\pm}5K$.TEX>.

  • PDF