• Title/Summary/Keyword: Low Alloy

Search Result 1,547, Processing Time 0.036 seconds

The effect on formation of ITO by magnetic field and applied vol tape in cylindrical magnetron sputtering (원통형 스퍼터링에서 자계와 인가전압이 ITO형성에 미치는 영향)

  • 하홍주;이우근;곽병구;김규섭;조정수;박정후
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.302-305
    • /
    • 1995
  • ITO(indium tin oxide) that is both conductive in electricity and transparent to the visible ray is called transparent conducting thin film. Nowaday, according to the development of flat panel display such as LCD(Liquid Crystal display, EL(electolumine- scence display), PDP(plasma display panel), ECD(electrocromic display), the higher quality in the low temperature process has been asked to reduce the production cost and to have a good uniformity on a large substrate. In this study, we prepared indium tin oxide(ITO) by a cylindrical DC magnetron sputtering with Indium-tin (9:1) alloy target instead of indium-tin oxide target. To reduce the defact in ITO, the effect on ITO by varing the magnetic field intensity and the applied voltage ares studied. the resistivity of the film deposited in oxygen partial pressure of 5% and substrate temperature of 140$^{\circ}C$. is 1.6${\times}$10$\^$-1/$\Omega$$.$cm with 85% optical transmission in viaible ray.

  • PDF

Surface segregation of NiZr and CuZr alloys.

  • Kang, H.J.;Park, N.S.;Kim, M.W.;O'Conner, D.J.;Macdonald, R.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1994.02a
    • /
    • pp.35-35
    • /
    • 1994
  • The surface segragation of NiZr, CuZr alloy has been studied wi th X-ray Imotoelectron spectroscopy(XPS), Auger electron spectroscopy(AES) and low energy ion scattering(LEIS). The composition of outmost atomic layer has been determinded by the use of LEIS at several incident energies using Ar+ ion. In the LEIS analysis, the effect of charge exchange has been estimated by a novel measurment of the charge exchange parameters while simul taneous determining the relative concentrations of Ni and Zr and the complementary information obtained will be described. The composition of the clean annealed surface, measured with AES only, will be contrasted wi th the surface concentration of the preferentially sputtered surface. The experimental results has been clearly demonstrated that when the NiZr ruld CuZr alloys are exposed to continuous Ar+ ion bombardment the outermost atomic layer is Zr rich due to preferential sputtering of Ni atoms. where Ni is preferentially sputtered, but the difference in sputtering yields is not sufficient to explain the observed composition. Therefore, it is necessary to consider other processes such as Radiation Induced Segregation(RIS). The surface composition of the heated sample surface predicts that Zr should surface segregate which futher supports the view that part of the Zr enrichment is due to RIS.to RIS.

  • PDF

Rectangular can backward extrusion analysis using FEM (FEM을 이용한 RECTANGULAR CAN 후방압출 해석)

  • 이상승;조규종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.699-702
    • /
    • 2001
  • The increasing demand in industry to produce rectangular cans at the reduction by the rectangular backward extrusion process involves better understanding of this process. In 2-D die deflection and dimensional variation of the component during extrusion, punch retraction, component injection and cooling was conducted using a coupled thermal-mechanical approach for the forward extrusion of aluminum alloy and low-carbon steel in tools of steel. Backward extrusion FE simulation and experimental simulation by physical modeling using wax as a model material have been performed. These simulations gave good results concerning the prediction of th flow modes and the corresponding surface expansions of the material occuring at the contact surface between the can and the punch. There prediction are the limits of the can height, depending on the reduction, the punch geometry, the workpiece material and the friction factor, in order to avoid the risk of damage caused by sticking of the workpiece material to the punch face. The influence of these different parameter on the distribution of the surface expansion along the inner can wall and bottom is already determined. This paper deals with the influence of the geometry changes of the forming tool and the work material in the rectangular backward using the 3-D finite element method.

  • PDF

EFFECTS OF TEMPERING AND PWHT ON MICROSTRUCTURES AND MECHANICAL PROPERTIES OF SA508 GR.4N STEEL

  • Lee, Ki-Hyoung;Jhung, Myung Jo;Kim, Min-Chul;Lee, Bong-Sang
    • Nuclear Engineering and Technology
    • /
    • v.46 no.3
    • /
    • pp.413-422
    • /
    • 2014
  • Presented in this study are the variations of microstructures and mechanical properties with tempering and Post-Weld Heat Treatment (PWHT) conditions for SA508 Gr.4N steel used as Reactor Pressure Vessel (RPV) material. The blocks of model alloy were austenitized at the conventional temperature of $880^{\circ}C$ then tempered and post-weld heat treated at four different conditions. The hardness and yield strength decrease with increased tempering and PWHT temperatures, but impact toughness is significantly improved, especially in the specimens tempered at $630^{\circ}C$. The sample tempered at $630^{\circ}C$ with PWHT at $610^{\circ}C$ shows optimum mechanical properties in hardness, strength, and toughness, excluding only the transition property in the low temperature region. The microstructural observation and quantitative analysis of carbide size distribution show that the variations of mechanical properties are caused by the under-tempering and carbide coarsening which occurred during the heat treatment process. The introduction of PWHT results in the deterioration of the ductile-brittle transition property by an increase of coarse carbides controlling cleavage initiation, especially in the tempered state at $630^{\circ}C$.

High alloyed new stainless steel shielding material for gamma and fast neutron radiation

  • Aygun, Bunyamin
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.647-653
    • /
    • 2020
  • Stainless steel is used commonly in nuclear applications for shielding radiation, so in this study, three different types of new stainless steel samples were designed and developed. New stainless steel compound ratios were determined by using Monte Carlo Simulation program Geant 4 code. In the sample production, iron (Fe), nickel (Ni), chromium (Cr), silicium (Si), sulphur (S), carbon (C), molybdenum (Mo), manganese (Mn), wolfram (W), rhenium (Re), titanium (Ti) and vanadium (V), powder materials were used with powder metallurgy method. Total macroscopic cross sections, mean free path and transmission number were calculated for the fast neutron radiation shielding by using (Geant 4) code. In addition to neutron shielding, the gamma absorption parameters such as mass attenuation coefficients (MACs) and half value layer (HVL) were calculated using Win-XCOM software. Sulfuric acid abrasion and compressive strength tests were carried out and all samples showed good resistance to acid wear and pressure force. The neutron equivalent dose was measured using an average 4.5 MeV energy fast neutron source. Results were compared to 316LN type stainless steel, which commonly used in shielding radiation. New stainless steel samples were found to absorb neutron better than 316LN stainless steel at both low and high temperatures.

The Influences of Process Parameters in Piercing with a High Aspect Ratio for Thick Aluminum Sheet (알루미늄 판재의 고 세장비 피어싱가공을 위한 작업변수의 영향)

  • Kim, J.G.;Kim, J.B.;Kim, J.H.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.23-28
    • /
    • 2014
  • The aspect ratio of a hole is defined as the ratio of the thickness to the diameter of the sheet metal. Most holes in the sheet metal industry are made by piercing. However, for thick sheets, which have an aspect ratio greater than 2, a machining process like drilling instead of piercing is usually used to make holes. In the current study, piercing, which is a shearing process, is evaluated to punch a hole with a high aspect ratio by using a newly designed die set-up. The piercing die was manufactured to prevent the punch from buckling and also to improve the alignment between the die components. An aluminum alloy sheet was selected for the experiments. The influence of several process parameters such as sheet thickness, clearance and stripping force were investigated. Experimentally, a hole with an aspect ratio of 5 was pierced. The resulting hole had a clean surface and the dimensional accuracy of pierced hole was considerably improved with decreasing clearance between punch and die. It is also shown that the larger penetration depth of the effective sheared surface can be achieved for high aspect ratio piercing relative to conventional piercing with a low aspect ratio.

The Current State of D-lactic Acid Production Technology Using Microorganism (미생물을 이용한 D형 유산 생산 기술 현황)

  • Hong, Chae-Hwan;Kim, Si-Hwan;Seo, Ji-Yeon;Han, Do-Suck;Kim, Yong-Hwan
    • KSBB Journal
    • /
    • v.26 no.6
    • /
    • pp.477-482
    • /
    • 2011
  • There has been a growing attention on PDLA (poly D-lactic acid) since stereocomplex PLA, a kind of polymer alloy between PLLA and PDLA was known much thermally stable compared PLLA. Superior characteristics of stereocomplex PLA result in the elevated demand for D-lactic acid. Although many research works have been reported for L-lactic acid production especially food industry, however there are relatively few research works for D-lactic acid production since D-lactic acid cannot find any applications in food industry. Most imminent issue for D-lactic acid is the economic production process that requires low cost medium, efficient lactic acid producing microorganism and finally large scale-up design. In this review, current status of D-lactic acid production process will be summarized and discussed for the further improvement of D-lactic acid production process.

Fabrication and characterization of PbIn-Au-PbIn superconducting junctions

  • Kim, Nam-Hee;Kim, Bum-Kyu;Kim, Hong-Seok;Doh, Yong-Joo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.5-8
    • /
    • 2016
  • We report on the fabrication and measurement results of the electrical transport properties of superconductor-normal metal-superconductor (SNS) weak links, made of PbIn superconductor and Au metal. The maximum supercurrent reaches up to ${\sim}6{\mu}A$ at T = 2.3 K and the supercurrent persists even at T = 4.7 K. Magnetic field dependence of the critical current is consistent with a theoretical fit using the narrow junction model. The superconducting quantum interference device (SQUID) was also fabricated using two PbIn-Au-PbIn junctions connected in parallel. Under perpendicular magnetic field, we clearly observed periodic oscillations of dV/dI with a period of magnetic flux quantum threading into the supercurrent loop of the SQUID. Our fabrication methods would provide an easy and simple way to explore the superconducting proximity effects without ultra-low-temperature cryostats.

Growth of InGaN on sapphire by GSMBE(gas source molecular beam epitaxy) using $DMH_y$(dimethylhydrazine) as nitrogen source at low temperature (Nitrogen source로 암모니아, $DMH_y$(dimethylhydrazine)을 사용해 Gas-Source MBE로 성장된 InGaN 박막특성)

  • Cho, Hae-Jong;Han, Kyo-Yong;Suh, Young-Suk;Park, Kang-Sa;Misawa, Yusuke
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1010-1014
    • /
    • 2004
  • High quality GaN layer and $In_xGa_{1-x}N$ alloy were obtained on (0001)sapphire substrate using ammonia$(NH_3)$ and dimethylhydrazine$(DMH_y)$ as a nitrogen source by gas source molecular hem epitaxy(GSMBE) respectively. As a result, RHEED is used to investigate the relaxation processes which take place during the growth of GaN and $In_xGa_{1-x}N$. The full Width at half maximum of the x-ray diffraction(FWHM) rocking curve measured from Plane of GaN has exhibitted as narrow as 8 arcmin. Photoluminescence measurement of GaN and $In_xGa_{1-x}N$ were investigated at room temperature, where the intensity of the band edge emission is much stronger than that of deep level emission. In content of $In_xGa_{1-x}N$ epitaxial layer according to growth condition was investigated.

  • PDF

Effects of Ag on the Characteristics of Sn43Bi57Agx(wt%) Lead-free Solder for Photovoltaic Ribbon (태양광 리본용 Sn43Bi57Agx(wt%) 무연 솔더의 특성에 미치는 Ag의 영향)

  • Jeong, Joo-Hyeon;Cho, Tae-Sik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.2
    • /
    • pp.119-125
    • /
    • 2017
  • We have studied the effects of Ag on the characteristics of $Sn_{43}Bi_{57}Ag_x$(wt%) lead-free solders for photovoltaic ribbon. Ag atoms in the solder formed an alloy phase of Ag3Sn after reacting with some part of Sn atoms, while they did not react with Bi atoms, but decreased the mean size of Bi solid phase and the thickness of solder. When Ag atoms of 3.0 wt% was added to eutectic $Sn_{43}Bi_{57}$(wt%) solder, it showed the optimally useful results that the peel strength of photovoltaic ribbon greatly increased and the sheet resistance of the solder decreased. In the meanwhile, the eutectic $Sn_{43}Bi_{57}$(wt%) solder showed a low melting temperature of $138.9^{\circ}C$, and showed a very similar result regardless of the added amount of Ag atoms.