• Title/Summary/Keyword: Lotic ecosystem

Search Result 20, Processing Time 0.029 seconds

Ecological Assessments of Aquatic Environment using Multi-metric Model in Major Nationwide Stream Watersheds (우리나라 주요하천 수계에서 다변수모델을 이용한 생태학적 수환경 평가)

  • An, Kwang-Guk;Lee, Jae-Yon;Bae, Dae-Yeul;Kim, Ja-Hyun;Hwang, Soon-Jin;Won, Doo-Hee;Lee, Jae-Kwan;Kim, Chang-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.5
    • /
    • pp.796-804
    • /
    • 2006
  • The objective of this research was to develop ecological multi-metric models using natural fish assemblages for a diagnosis of current stream health condition, and apply the model to nationwide lotic ecosystems of the Geum River, the Youngsan River, and the Sumjin River. The ecological stream health model was based on the index of biological integrity (IBI), which was originally developed in North American streams by Karr (1981), and the Rapid Bioassessment Protocol (RBP), which was scientifically established by the US EPA (1999). The metric numbers and metric attributes were partially changed for the regional applications, so the scoring criteria was modified for the assessment. Overall, metric values, based on the IBI calculations, reflected conventional water quality characteristics, based on nutrient regime, and agreed with results of staticeco-toxicity tests. Some stations impaired in terms of stream health were identified by the IBI approach, and also major key stressors affecting the stream health were identified by additional evaluations of physical habitats. Our preliminary results suggested that biological integrity in stream ecosystems was largely disturbed by habitat degradation as well as chemical pollutions. This new approach would be used as a key tool for ecological restorations and species conservations in the degraded aquatic ecosystems in Korea and applied for elucidating major causes of ecological disturbances. Ultimately, this approach provides us an effective management strategy of stream ecosystems through establishments of ecological networks in various watersheds.

A Development of Multi-metric Approach for Ecological Health Assessments in Lentic Ecosystems (정수 생태계 건강성 평가를 위한 다변수 메트릭 모델 개발)

  • An, Kwang-Guk;Han, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.72-81
    • /
    • 2007
  • The purpose of this study was to develop a multi-metric Lentic Ecosystem Health Assessment (LEHA) model and apply model to dataset sampled from Daechung Reservoir in September 2005. The metrics were composed of 11 parameters such as physical, chemical and biological variables. The metric attributes of $M_1{\sim}M_8$ followed after the model of biological integrity using fish assemblages that previously adapted in lotic ecosystems, while the metrics of $M_9{\sim}M_{11}$ were added on the basis of literature. The metric of $M_9$ reflected habitat conditions in the littoral zone and the metric of $M_{10}$ reflected chemical conditions of the reservoir. For the application of regression analysis of long-transformed conductivity [$Log_{10}$(Cond)] against $COD_{Mn}$, based on 150 sampling sites at Korean reservoirs, showed that the variation of conductivity was explained 77.4% [$COD_{Mn}=4.42{\times}Log_{10}(Cond)-5.43;\;R^2=0.774$, p<0.01, n=150] by the variation of $COD_{Mn}$. The metric of $M_{11}$ was based on Tropic State Index (TSI), based on chlorophyll-${\alpha}$ concentrations (Chl-${\alpha}$). Analysis of TSI $(Chl-{\alpha})$ showed that above 50 was estimated "1", $40{\sim}50$ was estimated "3" and below 40% was estimated '5'. Overall, velues of LEHA in the reservoir averaged 30.5, indicating a "fair${\sim}$poor condition", which is judged by the criteria of U.S. EPA (1993). More studies such as metric numbers and attributes should be done for the application of the model.

Classification of Major Reservoirs Based on Water Quality and Changes in Their Trophic Status in South Korea (수질 특성에 따른 우리나라 주요 호소 분류 및 호소 영양 상태 변동 특성 분석)

  • Dae-Seong Lee;Da-Yeong Lee;Young-Seuk Park
    • Korean Journal of Ecology and Environment
    • /
    • v.55 no.2
    • /
    • pp.156-166
    • /
    • 2022
  • Understanding the characteristics of reservoir water quality is fundamental in reservoir ecosystem management. The water quality of reservoirs is affected by various factors including hydro-morphology of reservoirs, land use/cover, and human activities in their catchments. In this study, we classified 83 major reservoirs in South Korea based on nine physicochemical factors (pH, dissolved oxygen, chemical oxygen demand, total suspended solid, total nitrogen, total phosphorus, total organic carbon, electric conductivity, and chlorophyll-a) measured for five years (2015~2019). Study reservoirs were classified into five main clusters through hierarchical cluster analysis. Each cluster reflected differences in the water quality of reservoirs as well as hydromorphological variables such as elevation, catchment area, full water level, and full storage. In particular, water quality condition was low at a low elevation with large reservoirs representing cluster I. In the comparison of eutrophication status in major reservoirs in South Korea using the Korean trophic state index, in some reservoirs including cluster IV composed of lagoons, the eutrophication was improved compared to 2004~2008. However, eutrophication status has been more impaired in most agricultural reservoirs in clusters I, III, and V than past. Therefore, more attention is needed to improve the water quality of these reservoirs.

Ecological Characteristics and Their Implications for the Conservation in the Taehwagang River Estuarine Wetland, Ulsan, South Korea (울산 태화강하구습지의 생태적 특성 및 보전을 위한 제안)

  • Pyoungbeom Kim;Yeonhui Jang;Yeounsu Chu
    • Ecology and Resilient Infrastructure
    • /
    • v.10 no.4
    • /
    • pp.171-183
    • /
    • 2023
  • Estuarine wetlands, which form a distinctive brackish water zone, serve as important habitats for organisms that have adapted to and thrive in this environment. Nonetheless, excessive development and utilization result in artificial disruptions that alter the distinctive functions and attributes of estuarine wetlands. To collect the basic data for the conservation of estuarine wetlands with excellent ecosystems, we investigated the vegetation distribution characteristics and biota status of the Taehwagang River Estuarine Wetland. Data from vegetation surveys have shown that 25 plant communities of six physiognomic vegetation types, including willow vegetation, lotic and lentic herbaceous vegetation, floating/submerged vegetation. In the upper reaches, where topographical diversity was high, various types of wetland vegetation were distributed. In terms of biodiversity, a total of 696 species, including 7 endangered wildlife species, were identified. Due to good ecological connectivity, tidal rivers are formed, brackish water species including various functional groups are distributed around this section. The inhabitation of various water birds, such as diving and dabbler ducks, were confirmed according to the aquatic environment of each river section. The collection of ecological information of the Taehwagang River Estuarine Wetland can be used as a framework for establishing the basis for conservation and management of the estuarine ecosystem and support policy establishment.

Characteristics of the Species Composition by Plant Community in the Shincheon Wetland of Mangyeong River, Jeonbuk (만경강 신천습지의 식물군락별 종조성적 특성)

  • Kwang-Jin, Cho;Jung-A, Lee;Jeoncheol, Lim;Yeounsu, Chu
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.6
    • /
    • pp.409-422
    • /
    • 2022
  • Riverine wetlands are an important element of the river ecosystem and account for approximately 38% of the inland wetlands surveyed so far. The Shincheon Wetland located in Mangyeong River is also a channel wetland as the flow rate is slowed by the constructed weirs, leading to sediment accumulation. To identify the conservation value and ecological characteristics of Shincheon Wetland, its vegetation and plant diversity were identified using a phytosociological method, and a total of 45 vegetation-related datasets were collected. Overall, 24 plant communities, comprising a total of 153 taxa (49 families, 117 genera, 146 species, 2 subspecies, 5 varieties) were identified. The plant with the highest appearance rate in the communities was Humulus japonicus Siebold & Zucc. In addition, annual herb species, including Rumex crispus L., Bromusjaponicus Thunb., Erigeron annuus (L.) Pers., and Artemisia indica Willd. were frequently observed to be growing in the secondary grassland. Naturalized plants were surveyed in the 38 taxa; the urbanization index was 10.3% and the naturalized index was 24.8%. Plant communities were largely classified into submerged vegetation, floating and floating-leaved vegetation, annual and biennial vegetation, perennial herb vegetation, and woody vegetation. The distribution of plant communities reflecting various habitats, including the lentic and lotic zone maintaining a constant water depth, littoral zone experiencing intermittent water level fluctuations, and dry floodplain environment was also confirmed. Overall, plant community development plays an important role in the habitat for wild animals; therefore, it is expected to positively impact biodiversity enhancement.

Ecological Characteristics of Benthic Macroinvertebrates according to Stream Order and Habitat - Focused on the Ecological Landscape Conservation Area - (하천 규모와 서식지에 따른 저서성 대형무척추동물의 생태특성 - 생태·경관보전 지역을 중심으로 -)

  • Hwang, In Chul;Kwon, Soon Jik;Park, Young Jun;Park, Jin Young
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.185-195
    • /
    • 2022
  • This study conducted a survey over spring and autumn from 2014 to 2020 to confirm the ecological characteristics of the size of streams and habitats, centering on the ecological landscape conservation area, and a total 256 species of benthic macroinvertebrates in 105 families, 25 orders, 8 classes, and 5 phyla appeared. In terms of appearance species, by region, the rate of appearance of Ephemeroptera and Trichoptera was high in regions consisting of lotic area and the rate of appearance of Coleoptera and Odonata was high in regions consisting of lentic areas. When comparing the population of Ephemeroptera-Plecoptera-Trichoptera (EPT) groups by region, they were classified into three groups: upstream area, mainstream area, and lentic areas, and it was confirmed that the population ratio of EPT changed as it moved from upstream to downstream. As the stream order increased, the number of species and populations increased. The Shredder group (SH) tended to decrease as the size of stream increased(r=0.9925), and the Collector-Filtering (CF) tended to increase as the size of stream increased(r=0.9319). It was confirmed that the Scraper (SC) replaced each other between species with the same ecological status as it went downstream from upstream, and it is thought that the SC did not differ significantly by stream order. In order to maintain a healthy ecosystem in the designation and management of ecological landscape conservation areas, it is necessary to consider ecological factors such as competition and physico-chemistry factors such as water quality and substrate conditions. Therefore, if the competent authority designated survey areas including buffer areas that include streams and physical habitats of various sizes, it will be advantageous to the conservative area and securing more biological resources.

Spatio-temporal Water Quality Variations at Various Streams of Han-River Watershed and Empirical Models of Serial Impoundment Reservoirs (한강수계 하천에서의 시공간적 수질변화 특성 및 연속적 인공댐호의 경험적 모델)

  • Jeon, Hye-Won;Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.45 no.4
    • /
    • pp.378-391
    • /
    • 2012
  • The objective of this study was to determine temporal patterns and longitudinal gradients of water chemistry at eight artificial reservoirs and ten streams within the Han-River watershed along the main axis of the headwaters to the downstreams during 2009~2010. Also, we evaluated chemical relations and their variations among major trophic variables such as total nitrogen (TN), total phosphorus (TP), and chlorophyll-a (CHL-a) and determined intense summer monsoon and annual precipitation effects on algal growth using empirical regression model. Stream water quality of TN, TP, and other parameters degradated toward the downstreams, and especially was largely impacted by point-sources of wastewater disposal plants near Jungrang Stream. In contrast, summer river runoff and rainwater improved the stream water quality of TP, TN, and ionic contents, measured as conductivity (EC) in the downstream reach. Empirical linear regression models of log-transformed CHL-a against log-transformed TN, TP, and TN : TP mass ratios in five reservoirs indicated that the variation of TP accounted 33.8% ($R^2$=0.338, p<0.001, slope=0.710) in the variation of CHL and the variation of TN accounted only 21.4% ($R^2$=0.214, p<0.001) in the CHL-a. Overall, our study suggests that, primary productions, estimated as CHL-a, were more determined by ambient phosphorus loading rather than nitrogen in the lentic systems of artificial reservoirs, and the stream water quality as lotic ecosystems were more influenced by a point-source locations of tributary streams and intense seasonal rainfall rather than a presence of artificial dam reservoirs along the main axis of the watershed.

Intergrated Ecological Health Assessments in Cho River (초강의 통합적 생태건강성 평가)

  • Choi, Ji-Woong;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.3 s.117
    • /
    • pp.320-330
    • /
    • 2006
  • An integrated health of a lotic ecosystem, Cho River, was evaluated by various approaches such as conventional water quality analysis, physical assessments of Qualitative Habitat Evaluation Index (QHEI), and the bioassay of Index of Biological Integrity (IBI) durin August${\sim}$September 2005. The IBI model used in the study was based on original multivariate metric model and then modified the metric attributes of the model for the regional application. Physical habitat health, based on the QHEI, was estimated using eleven metrics. During the study, values of IBI model averaged 36, which was judged as 'fair' to 'good' conditions. Spatial variations in the model values were evident: the headwater site (S1) was estimated as 48, indicating an 'excellent' condition, and the other sites were estimated 32${\sim}$38, 'good' condition. Values of the QHEI in the all sites averaged 148, which is judged as a good condition. The QHEI values varied from 120 (fair condition) to 199 (excellent condition) depending on the location of the stream. Site 5 (S5) was estimated as 'fair${\sim}$good' condition, while Site 7 (S7) was estimated as 'excellent' condition. The biological health, based on the IBI, reflected the habitat health. However, chemical conditions in terms of pH, turbidity, electric conductivity, dissolved oxygen (DO) did not make a difference in the biological health because of minor chemical differences among the locations.

Influence of the Asian Monsoon on Seasonal Fluctuations of Water Quality in a Mountainous Stream (산간 계류성 하천의 계절적 수질변동에 대한 몬순강우의 영향)

  • Shin, In-Chul;An, Kwang-Guk
    • Korean Journal of Ecology and Environment
    • /
    • v.38 no.1 s.110
    • /
    • pp.54-62
    • /
    • 2005
  • The present study was to determine how seasonal rainfall intensity influences nutrient dynamics, ionic contents, oxygen demands, and suspended solids in a lotic ecosystem. Largest seasonal variabilities in most parameters occurred during the two months of July to August and these were closely associated with large spate of rainfall. Dissolved oxygen (DO) had an inverse function of water temperature (r = = = - 0.986, p<0.001). Minimum pH values of<6.5 were observed in the late August when rainfall peaked in the study site, indicating an ionic dilution of stream water by precipitation. Electrical conductivity (EC) was greater during summer than any other seasons, so the overall conductivity values had direct correlation (r = 0.527, p<0.01) with precipitation. Ionic dilution, however, was evident 4 ${\sim}$ 5 days later in short or 1 ${\sim}$ 2 weeks in long after the intense rain, indicating a time-lag phenomenon of conductivity. Daily COD values varied from 0.8 mg $L^{-1}$ to 7.9 mg $L^{-1}$ and their seasonal pattern was similar (r = 0.548, p<0.001) to that of BOD. Total nitrogen (TN) varied little compared to total phosphorus (TP) and was minimum in the base flow of March. In contrast, major input of TP occurred during the period of summer monsoon and this pattern was similar to suspended solids, implying that TP is closely associated (r = 0.890, p<0.01) with suspended inorganic solids. Mass ratios of TN : TP were determined by TP (r= -0.509, p<0.01) rather than TN (r= -0.209, p<0.01). The N : P ratios indicated that phosphorus was a potential primary limiting nutrient for the stream productivity. Overall data suggest that rainfall intensity was considered as a primary key component regulating water chemistry in the stream and maximum variation in water quality was attributed to the largest runoff spate during the summer monsoon.

Change in the Fish Fauna and Fish Community Characteristics in the Upper Reaches of the Seomgang (River), Korea (섬강 상류의 어류상 변화 및 어류군집 특성)

  • Hyeong-Su Kim;Mee-Sook Han;Myeong-Hun Ko
    • Korean Journal of Environment and Ecology
    • /
    • v.38 no.3
    • /
    • pp.246-262
    • /
    • 2024
  • The survey conducted from 2018 to 2020 aimed to investigate the changes in fish fauna and community characteristics in the upper reaches of the Seomgang River, Korea. During the survey period, 35 sites were selected, resulting in the collection of 7,817 fish belonging to 12 families and 40 species. The dominant species was Zacco koreanus, with a relative abundance of 34.5%, followed by Z. platypus at 28.7%. Other significant species included Rhynchocypris oxycephalus (10.2%), Pungtungia herzi (5.3%), and Squalidus gracilis majimae (4.3%). Notably, four protected species - Acheilognathus signifer, Gobiobotia brevibarba, and Cottus koreanus, designated as class II endangered wildlife by the Ministry of Environment- were identified. These species predominantly inhabit the middle and lower reaches, except for Gobiobotia brevibarba, which is found in the upper reaches. Nineteen species, accounting for a 47.5% endemism rate, were endemic to Korea. The study also noted the presence of one climate-sensitive species, Cottus koreanus, and two exotic species, Carassius cuvieri and Micropterus salmoides. Community analysis indicated a trend of decreasing dominance and increasing diversity and richness from upstream to downstream, with a distinct division into uppermost reaches, upper reaches, middle and lower reaches, and lakes. The construction of the Hwaseong Dam has had a significant direct and indirect impact on the fish community. The habitat and abundance of endangered species such as R. pseudosericeus, A. signifer, and G. brevibarba decreased dramatically immediately after the dam's construction, transforming the submerged area from lotic to lentic environments. Approximately 20 years later, the habitats have stabilized, leading to an increase in the fish population and a recovery of the previously diminished endangered species. The river health (FAI) was also evaluated, with 27 sites rated as very good (A), seven as good (B), and one as fair (C). However, endangered species such as A. signifer continue to face threats from dam and river construction, while C. Koreanus has experienced a severe population decline due to river works. Additionally, the presence of the ecosystem-disrupting species M. salmoides in Hwaseong Lake raises concerns. To ensure a stable habitat for fish in the upper reaches of the Seomgang River, it is crucial to avoid indiscriminate river construction, urgently implement restoration policies for endangered species such as A. signifer, and develop management strategies to control the spread of invasive species such as bass.