• Title/Summary/Keyword: Lossless

Search Result 439, Processing Time 0.022 seconds

Lossless Image Compression Using Block-Adaptive Context Tree Weighting (블록 적응적인 Context Tree Weighting을 이용한 무손실 영상 압축)

  • Oh, Eun-ju;Cho, Hyun-ji;Yoo, Hoon
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.43-49
    • /
    • 2020
  • This paper proposes a lossless image compression method based on arithmetic coding using block-adaptive Context Tree Weighting. The CTW method predicts and compresses the input data bit by bit. Also, it can achieve a desirable coding distribution for tree sources with an unknown model and unknown parameters. This paper suggests the method to enhance the compression rate about image data, especially aerial and satellite images that require lossless compression. The value of aerial and satellite images is significant. Also, the size of their images is huger than common images. But, existed methods have difficulties to compress these data. For these reasons, this paper shows the experiment to prove a higher compression rate when using the CTW method with divided images than when using the same method with non-divided images. The experimental results indicate that the proposed method is more effective when compressing the divided images.

Lossless Color Image Compression using Inter-channel Correlation (채널 간 상관관계를 이용한 무손실 컬러 이미지 압축)

  • Kim, Se-Yun;Cho, Nam-Ik
    • Journal of Broadcast Engineering
    • /
    • v.16 no.6
    • /
    • pp.962-968
    • /
    • 2011
  • The conventional lossless compression of color images is to apply a compression method to each of color components separately, without considering the channel correlation. There had been several methods that consider the channel correlation, but they were confined to the compression of satellite or aerial images only, and the performance of these algorithms to general photos is not satisfactory. This paper proposes a new lossless color image compression method that exploits the correlation between the color components. Specifically, asymmetric sampling is applied to transform an image into mosaic image and the rest, which are compressed separately. By using the information from the compressed mosaic image, the rest images are predicted for further reducing the information to be compressed. Experimental results show that the proposed method improves the compression performance by 35% over the conventional separate compression methods and 10% over the existing methods that exploit the channel correlation.

QuadTree-Based Lossless Image Compression and Encryption for Real-Time Processing (실시간 처리를 위한 쿼드트리 기반 무손실 영상압축 및 암호화)

  • Yoon, Jeong-Oh;Sung, Woo-Seok;Hwang, Chan-Sik
    • The KIPS Transactions:PartC
    • /
    • v.8C no.5
    • /
    • pp.525-534
    • /
    • 2001
  • Generally, compression and encryption procedures are performed independently in lossless image compression and encryption. When compression is followed by encryption, the compressed-stream should have the property of randomness because its entropy is decreased during the compression. However, when full data is compressed using image compression methods and then encrypted by encryption algorithms, real-time processing is unrealistic due to the time delay involved. In this paper, we propose to combine compression and encryption to reduce the overall processing time. It is method decomposing gray-scale image by means of quadtree compression algorithms and encrypting the structural part. Moreover, the lossless compression ratio can be increased using a transform that provides an decorrelated image and homogeneous region, and the encryption security can be improved using a reconstruction of the unencrypted quadtree data at each level. We confirmed the increased compression ratio, improved encryption security, and real-time processing by using computer simulations.

  • PDF

Design of a Lossless Audio Coding Using Cholesky Decomposition and Golomb-Rice Coding (콜레스키 분해와 골롬-라이스 부호화를 이용한 무손실 오디오 부호화기 설계)

  • Cheong, Cheon-Dae;Shin, Jae-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.11
    • /
    • pp.1480-1490
    • /
    • 2008
  • Design of a linear predictor and matching of an entropy coder is the art of lossless audio coding. In this paper, we use the covariance method and the Choleskey decomposition for calculating linear prediction coefficients instead of the autocorreation method and the Levinson-Durbin recursion. These results are compared to the polynomial predictor. Both of them, the predictor which has small prediction error is selected. For the entropy coding, we use the Golomb-Rice coder using the block-based parameter estimation method and the sequential adaptation method with LOCO-land RLGR. The proposed predictor and the block-based parameter estimation have $2.2879%{\sim}0.3413%$ improved compression ratios compared to FLAC lossless audio coder which use the autocorrelation method and the Levinson-Durbin recursion. The proposed predictor and the LOCO-I adaptation method could improved by $2.2879%{\sim}0.3413%$. But the proposed predictor and the RLGR adaptation method got better results with specific signals.

  • PDF

Lossless Frame Memory Compression with Low Complexity based on Block-Buffer Structure for Efficient High Resolution Video Processing (고해상도 영상의 효과적인 처리를 위한 블록 버퍼 기반의 저 복잡도 무손실 프레임 메모리 압축 방법)

  • Kim, Jongho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.11
    • /
    • pp.20-25
    • /
    • 2016
  • This study addresses a low complexity and lossless frame memory compression algorithm based on block-buffer structure for efficient high resolution video processing. Our study utilizes the block-based MHT (modified Hadamard transform) for spatial decorrelation and AGR (adaptive Golomb-Rice) coding as an entropy encoding stage to achieve lossless image compression with low complexity and efficient hardware implementation. The MHT contains only adders and 1-bit shift operators. As a result of AGR not requiring additional memory space and memory access operations, AGR is effective for low complexity development. Comprehensive experiments and computational complexity analysis demonstrate that the proposed algorithm accomplishes superior compression performance relative to existing methods, and can be applied to hardware devices without image quality degradation as well as negligible modification of the existing codec structure. Moreover, the proposed method does not require the memory access operation, and thus it can reduce costs for hardware implementation and can be useful for processing high resolution video over Full HD.

A Instructional Contents Creator using Wavelet for Lossless Image Compression (웨이브렛 기반 무손실 압축 방법을 사용한 동영상 강의 콘텐츠 제작기 구현)

  • Lee, Sang-Yeob;Park, Seong-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.2
    • /
    • pp.71-81
    • /
    • 2011
  • In order to easily create video tutorials, the algorithm is needed that video camera recording, white board images, video attachments, and document data are combined in real-time. In this study, we implemented the video lecture content creation system using wavelet-based lossless compression to composite multimedia objects in real-time and reproduce the images. Using commercially available PC can be useful when lecturers want to make video institutional contents, it can be operated easily and fastly. Therefore, it can be very efficient system for e-Learning and m-Learning. In addition, the proposed system including multimedia synthesis technology and real-time lossless compression technology can be applied to various fields, different kinds of multimedia creation, remote conferencing, and e-commerce so there are highly significant.

Design of an Efficient Lossless CODEC for Wavelet Coefficients (웨이블릿 계수에 대한 효율적인 무손실 부호화 및 복호화기 설계)

  • Lee, Seonyoung;Kyeongsoon Cho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.335-344
    • /
    • 2003
  • The image compression based on discrete wavelet transform has been widely accepted in industry since it shows no block artifacts and provides a better image quality when compressed to low bits per pixel, compared to the traditional JPEG. The coefficients generated by discrete wavelet transform are quantized to reduce the number of code bits to represent them. After quantization, lossless coding processes are usually applied to make further reduction. This paper presents a new and efficient lossless coding algorithm for quantified wavelet coefficients based on the statistical properties of the coefficients. Combined with discrete wavelet transform and quantization processes, our algorithm has been implemented as an image compression chip, using 0.5${\mu}{\textrm}{m}$ standard cells. The experimental results show the efficiency and performance of the resulting chip.

Region-Growing Segmentation Algorithm for Rossless Image Compression to High-Resolution Medical Image (영역 성장 분할 기법을 이용한 무손실 영상 압축)

  • 박정선;김길중;전계록
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.1
    • /
    • pp.33-40
    • /
    • 2002
  • In this paper, we proposed a lossless compression algorithm of medical images which is essential technique in picture archive and communication system. Mammographic image and magnetic resonance image in among medical images used in this study, proposed a region growing segmentation algorithm for compression of these images. A proposed algorithm was partition by three sub region which error image, discontinuity index map, high order bit data from original image. And generated discontinuity index image data and error image which apply to a region growing algorithm are compressed using JBIG(Joint Bi-level Image experts Group) algorithm that is international hi-level image compression standard and proper image compression technique of gray code digital Images. The proposed lossless compression method resulted in, on the average, lossless compression to about 73.14% with a database of high-resolution digital mammography images. In comparison with direct coding by JBIG, JPEG, and Lempel-Ziv coding methods, the proposed method performed better by 3.7%, 7.9% and 23.6% on the database used.

  • PDF

Secured Telemedicine Using Whole Image as Watermark with Tamper Localization and Recovery Capabilities

  • Badshah, Gran;Liew, Siau-Chuin;Zain, Jasni Mohamad;Ali, Mushtaq
    • Journal of Information Processing Systems
    • /
    • v.11 no.4
    • /
    • pp.601-615
    • /
    • 2015
  • Region of interest (ROI) is the most informative part of a medical image and mostly has been used as a major part of watermark. Various shapes ROIs selection have been reported in region-based watermarking techniques. In region-based watermarking schemes an image region of non-interest (RONI) is the second important part of the image and is used mostly for watermark encapsulation. In online healthcare systems the ROI wrong selection by missing some important portions of the image to be part of ROI can create problem at the destination. This paper discusses the complete medical image availability in original at destination using the whole image as a watermark for authentication, tamper localization and lossless recovery (WITALLOR). The WITALLOR watermarking scheme ensures the complete image security without of ROI selection at the source point as compared to the other region-based watermarking techniques. The complete image is compressed using the Lempel-Ziv-Welch (LZW) lossless compression technique to get the watermark in reduced number of bits. Bits reduction occurs to a number that can be completely encapsulated into image. The watermark is randomly encapsulated at the least significant bits (LSBs) of the image without caring of the ROI and RONI to keep the image perceptual degradation negligible. After communication, the watermark is retrieved, decompressed and used for authentication of the whole image, tamper detection, localization and lossless recovery. WITALLOR scheme is capable of any number of tampers detection and recovery at any part of the image. The complete authentic image gives the opportunity to conduct an image based analysis of medical problem without restriction to a fixed ROI.

Context-based Predictive Coding Scheme for Lossless Image Compression (무손실 영상 압축을 위한 컨텍스트 기반 적응적 예측 부호화 방법)

  • Kim, Jongho;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.1
    • /
    • pp.183-189
    • /
    • 2013
  • This paper proposes a novel lossless image compression scheme composed of direction-adaptive prediction and context-based entropy coding. In the prediction stage, we analyze the directional property with respect to the current coding pixel and select an appropriate prediction pixel. In order to further reduce the prediction error, we propose a prediction error compensation technique based on the context model defined by the activities and directional properties of neighboring pixels. The proposed scheme applies a context-based Golomb-Rice coding as the entropy coding since the coding efficiency can be improved by using the conditional entropy from the viewpoint of the information theory. Experimental results indicate that the proposed lossless image compression scheme outperforms the low complexity and high efficient JPEG-LS in terms of the coding efficiency by 1.3% on average for various test images, specifically for the images with a remarkable direction the proposed scheme shows better results.