Design of an Efficient Lossless CODEC for Wavelet Coefficients

웨이블릿 계수에 대한 효율적인 무손실 부호화 및 복호화기 설계

  • Lee, Seonyoung (School of Electronics and Information Engineering, Hankuk University of Foreign Studies) ;
  • Kyeongsoon Cho (School of Electronics and Information Engineering, Hankuk University of Foreign Studies)
  • Published : 2003.05.01

Abstract

The image compression based on discrete wavelet transform has been widely accepted in industry since it shows no block artifacts and provides a better image quality when compressed to low bits per pixel, compared to the traditional JPEG. The coefficients generated by discrete wavelet transform are quantized to reduce the number of code bits to represent them. After quantization, lossless coding processes are usually applied to make further reduction. This paper presents a new and efficient lossless coding algorithm for quantified wavelet coefficients based on the statistical properties of the coefficients. Combined with discrete wavelet transform and quantization processes, our algorithm has been implemented as an image compression chip, using 0.5${\mu}{\textrm}{m}$ standard cells. The experimental results show the efficiency and performance of the resulting chip.

웨이블릿 변환에 기반을 둔 영상 압축은 기존의 JPEG과 비교했을 때, 블록 형태의 잡음이 나타나지 않고 화소 당 비트 수를 적게 압축할 때의 화질이 우수하므로 산업계에서 널리 사용되고 있다. 이산 웨이블릿 변환에 의해서 생성되는 계수들은 양자화 과정을 거쳐서 코드 비트 수를 줄이게 된다. 양자화 다음에는 무손실 부호화 과정을 통해서 코드 비트 수를 더 감소시킨다. 본 논문은 생성된 계수들의 통계적 특성을 바탕으로 양자화된 계수들에 대하여 효율적으로 무손실 부호화를 수행하는 새로운 알고리즘을 제시하고 있다. 이산 웨이블릿 변환과 양자화 과정을 결합하여 본 알고리즘을 0.5㎛ 표준 셀 방식의 영상 압축 칩으로 구현한 결과, 효율성과 성능을 확인할 수 있었다.

Keywords

References

  1. S. G. Mallat, 'A theory for multiresolution signal decomposition : The wavelet representation,' IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 11, no. 7, pp. 674-693, July 1989 https://doi.org/10.1109/34.192463
  2. David S.Taubman and Michael W. Marcellin, JPEG 2000 : Image Compression Fundamentals, Standards and Practice, KAP, 2002
  3. Mehran Aminian and Farzan Aminian, 'Neural-network based analog-circuit fault diagnosis using wavelet transform as preprocessor,' IEEE Trans. on Circuit and Systems-II: Analog and Digital Processing, vol. 47, no. 2, pp. 151-156, Feb. 2000 https://doi.org/10.1109/82.823545
  4. Guoliang Fan and Xiang-Gen Xia, 'Improved hidden markov models in wavelet domain,' IEEE Trans. on Signal Processing, vol. 49, no. 1, pp. 115-120, Jan. 2001 https://doi.org/10.1109/78.890351
  5. Nick Soveiko and Michel S. Nakhla, 'Efficient capacitance extraction computations in wavelet domain,' IEEE Trans. on Circuit and System-I: Fundamental Theory and Applications, vol. 47, no. 5, pp. 684-701, May 2000 https://doi.org/10.1109/81.847874
  6. Aleksandra Mojsilovic, Miodrag V. Popovic and Dejan M. Rackov, 'On the selection of an optimal wavelet basis for texture characterization,' IEEE Trans. on Image Processing, vol. 9, no. 12, pp. 2043-2050, Dec. 2000 https://doi.org/10.1109/83.887972
  7. D. A. Huffman, 'A method for the construction of minimum-redundancy codes,' Proc. of IRE, vol. 40, pp. 1098-1101, 1952 https://doi.org/10.1109/JRPROC.1952.273898
  8. S. Lee, K. Cho, and S. Hong, 'Design of a two-dimensional discrete wavelet transform core for image compression,' Journal of Korean Physics Society, vol. 38, no. 3, pp. 224-231, Mar. 2001
  9. D. E. Thomas and P. R. Moorby, The Verilog Hardware Description Language, KAP, 1996
  10. Samsung Electronics Co., Ltd., $0.5{\mu}m$ High Density CMOS Standard Cell Library Data Book, June 1997
  11. I. Daubechies, 'Orthonormal bases of compactly supported wavelets,' Communication Pure Applied Math., vol. 41, pp. 909-996, Nov. 1988 https://doi.org/10.1002/cpa.3160410705
  12. Samsung Electronics Co., Ltd., KM416S1120D : IM ${\times}$ 16 SDRAM, Revision 1.4, June 1999
  13. M. Vishwanath, R. M. Owens and M. J. Irwin, 'VLSI architectures for the discrete wavelet transform,' IEEE Trans. on Circuits and Systems-II: Analog and Digital Signal Processing, vol. 42, no. 5, pp. 305-316, May 1995 https://doi.org/10.1109/82.386170
  14. A. Grzeszczak, M. K. Mandal, S. Panchanathan and T. Yeap, 'VLSI implementation of discrete wavelet transform,' IEEE Trans. on VLSI Systems, vol. 4, no. 4, pp. 421-433, Dec. 1996 https://doi.org/10.1109/92.544407