• Title/Summary/Keyword: Losses

Search Result 5,309, Processing Time 0.028 seconds

High Efficiency DC/DC converter using MOSFET and IGBT (MOSFET와 IGBT를 이용한 DC/DC 컨버터의 효율 증대)

  • Kwon H.N.;Jeon Y.S.;Ban H.S.;Choe G.H.;Bae J.H.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.520-524
    • /
    • 2001
  • Recently, the demand of large capacity SMPS for industrial area is increasing. Full-bridge dc-dc converter with IGBT is most widely used for large capacity SMPS because IGBT has a low-conduction loss and large current capacity, But most large capacity Full-bridge do-dc converter using IGBT has low operating frequency because of switching loss at IGBT especially at turn-off by current tail and it's cause of relatively big converter size. MOSFET has low switching losses has been widely used for high frequency SMPS but it has a problem to apply to large capacity SMPS because it has large conduction resistance causing large on-time losses. In this paper, for reduction losses at switching device, MOSFET is applied at parallel with IGBT in full-bridge dc/dc converter.

  • PDF

Efficiency Optimization Control of SynRM with Hybrid Artificial Intelligent Controller (하이브리드 인공지능 제어기에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Lee, Jung-Ho;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.321-326
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor which minimizes the copper and iron losses. The design of the speed controller based on adaptive fuzzy-neural networks(AFNN) controller that is implemented using fuzzy control and neural networks. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of the hybrid artificial intelligent controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

A study on the efficiency characteristics for two transistor Forward DC-DC converter (Two transistor 포워드 DC-DC 컨버터의 효율 특성에 관한 연구)

  • Ahn, Tae-Young;Lee, Gwang-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • In this paper, we present an analytical method that provides fast and efficient evaluation of the conversion efficiency for Two transistor forward (TTF) DC-DC converter In the proposed method, the conduction losses are evaluated by calculating the effective values of the ideal current waveform first and incorporating them into an exact equivalent circuit model of the TTF converter that includes all the parasitic resistances of the circuit components. While the conduction losses are accurately accounted for the diode rectification, the core losses are assumed to be negligible in order to simplify the analysis. The validity and accuracy of the proposed method are verified with experiments on a prototype TTF converter An excellent correlation between the experiments and theories are obtained for the input voltages of 390V, output voltage 12V and maximum power 480W.

Loss Analysis and Air-Cooled Design for a Cascaded Electrical Source Transmitter

  • Xue, Kai-Chang;Wang, Shuang;Lin, Jun;Li, Gang;Zhou, Feng-Dao
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.530-543
    • /
    • 2015
  • Air-cooling method is adopted on the basis of the requirements for the thermal stability and convenient field use of an electrical source transmitter. The power losses of the transmitter are determined after calculating the losses of the alternating current (AC)-direct current (DC) power supply, the constant-current circuit, and the output circuit. According to the analysis of the characteristics of a heat sink with striped fins and a fan, the engineering calculation expression of the Nusselt number and the design process for air-cooled dissipation are proposed. Experimental results verify that the error between calculated and measured values of the transmitter losses is 12.2%, which meets the error design requirements of less than 25%. Steady-state average temperature rise of the heat sink of the AC-DC power supply is $22^{\circ}C$, which meets the design requirements of a temperature rise between $20^{\circ}C$ and $40^{\circ}C$. The transmitter has favorable thermal stability with 40 kW output power.

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

Investigation of the surface structure improvement to reduce the optical losses of crystalline silicon solar cells (결정질 실리콘 태양전지의 광학적 손실 감소를 위한 표면구조 개선에 관한 연구)

  • Lee, Eun-Joo;Lee, Soo-Hong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.183-186
    • /
    • 2006
  • Reduction of optical losses in crystalline silicon solar cells by surface modification is one of the most important issues of silicon photovoltaics. Porous Si layers on the front surface of textured Si substrates have been investigated with the aim of improving the optical losses of the solar cells, because an anti-reflection coating and a surface passivation can be obtained simultaneously in one process. We have demonstrated the feasibility of a very efficient porous Si AR layer, prepared by a simple, cost effective, electrochemical etching method. Silicon p-type CZ (100) oriented wafers were textured by anisotropic etching in sodium carbonate solution. Then, the porous Si layer were formed by electrochemical etching in HF solutions. After that, the properties of porous Si in terms of morphology, structure and reflectance are summarized. The surface morphology of porous Si layers were investigated using SEM. The formation of a porous Si layer about $0.1{\mu}m$ thick on the textured silicon wafer result in an effective reflectance coefficient $R_{eff}$ lower than 5% in the wavelength region from 400 to 1000nm. Such a surface modification allows improving the Si solar cell characteristics.

  • PDF

Use of Ionizing Radiation as a Phytosanitary Treatment for Postharvest Disease Control

  • Jeong, Rae-Dong
    • Journal of Radiation Industry
    • /
    • v.8 no.2
    • /
    • pp.97-104
    • /
    • 2014
  • Postharvest diseases cause considerable losses to harvested fruits and vegetables worldwide. Fresh produce suspected of harboring postharvest disease must be treated to control any pathogens present. Although there are various treatments to control postharvest losses by pathogens, the current community is eager to take safer and more eco-friendly alternatives to help with human health and reduce environmental risks. Ionizing irradiation is a promising phytosanitary treatment that has a significant potential to control postharvest diseases in use worldwide. Although almost 19000 metric tons of sweet potatoes and various fruits are irradiated each year in six countries to control postharvest disease, irradiation continues to be a debate, with slow acceptance by industries. Irradiation alone is not effective as a fungicide, and an over dose affects the physical properties of irradiated products. A combination of irradiation with other treatments such as heating, biocontrol agents, chlorination, and nano Ag particles is to enhance their effectiveness. Challenges to the use of phytosanitary irradiation are an avoidance of irradiated postharvest and cost of the irradiation facilities, and thus consumers still need to be educated on the principles and benefits of irradiation and prepare an optimum economy of scale for commercial use. In this review, we evaluated the current phytosanitary irradiation, and combination with various other treatments to minimize the postharvest losses.

A Study on SmartPhone Hacking and Forensic of Secondary Damage caused by Leakage of Personal Information (개인정보유출 2차 피해로 인한 스마트폰 Smishing 해킹과 Forensic 연구)

  • Park, In-woo;Park, Dea-woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.273-276
    • /
    • 2014
  • In 2014, the leakage of personal information from 3 credit card companies resulted in divulging approximately 10,000 customers' personal information. Although the credit card companies concluded that there was no secondary loss due to the leakage of personal information, secondary financial losses resulting from the leakage of personal information currently occur. In particular, hackers who employ smishing masquerade acquaintances by using the divulged personal information to ask payment for Ms. Kim's Sochi Olympics legal processing or exposed traffic violations. The hackers cause secondary financial losses through smartphones. This study aims to conduct a forensic analysis of smishing incidents in smartphones through the leakage of personal information, and to make a forensic analysis of financial losses due to the smishing incidents.

  • PDF

Self-Feeder Driver for Voltage Balance in Series-Connected IGBT Associations

  • Guerrero-Guerrero, A.F.;Ustariz-Farfan, A.J.;Tacca, H.E.;Cano-Plata, E.A.
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.68-78
    • /
    • 2019
  • The emergence of high voltage conversion applications has resulted in a trend of using semiconductor device series associations. Series associations allow for operation at blocking voltages, which are higher than the nominal voltage for each of the semiconductor devices. The main challenge with these topologies is finding a way to guarantee the voltage balance between devices in both blocking and switching transients. Most of the methods that have been proposed to mitigate static and dynamic voltage unbalances result in increased losses within the device. This paper introduces a new series stack topology, where the voltage unbalances are reduced. This in turn, mitigates the switching losses. The proposed topology consists of a circuit that ensures the soft switching of each device, and one auxiliary circuit that allows for switching energy recovery. The principle for the topology operation is presented and experimental tests are performed for two modules. The topology performs excellently for switching transients on each of the devices. The voltage static unbalances were limited to 10%, while the activation/deactivation delay introduced by the lower module IGBT driver takes place in the dynamic unbalances. Thus, the switching losses are reduced by 40%, when compared to hard switching configurations.

Hybrid Phase Excitation Method for Improving Efficiency of 7-Phase BLDC Motors for Ship Propulsion Systems

  • Park, Hyung-Seok;Park, Sang-Woo;Kim, Dong-Youn;Kim, Jang-Mok
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.761-770
    • /
    • 2019
  • This paper proposes a hybrid phase windings excitation method for improving the efficiency of a 7-phase brushless DC (BLDC) motor in the electric propulsion system of a ship. The electrical losses of a BLDC motor system depend on the operating region and the number of excited phase windings (2-phase, 4-phase or general 6-phase windings). In this paper the operating region and torque/speed characteristics according to the motor rotation speed and propeller load are analyzed for a number of excitation methods. In addition, it analyzes the electrical losses of the system under each of the excitation methods in the entire operating region of the motor. In every sampling time, the proposed control method calculates the electrical loss of the system for each of the excitation methods and operates a 7-phase BLDC motor by selecting the excitation method that results a decreased electrical loss at the operating speed. The usefulness of the proposed control algorithm is verified through experimental results.