• Title/Summary/Keyword: Loss of heterozygosity

Search Result 49, Processing Time 0.03 seconds

Alpha-1,3-galactosyltransferase-deficient miniature pigs produced by serial cloning using neonatal skin fibroblasts with loss of heterozygosity

  • Kim, Young June;Ahn, Kwang Sung;Kim, Minjeong;Kim, Min Ju;Ahn, Jin Seop;Ryu, Junghyun;Heo, Soon Young;Park, Sang-Min;Kang, Jee Hyun;Choi, You Jung;Shim, Hosup
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.439-445
    • /
    • 2017
  • Objective: Production of alpha-1,3-galactosyltransferase (${\alpha}GT$)-deficient pigs is essential to overcome xenograft rejection in pig-to-human xenotransplantation. However, the production of such pigs requires a great deal of cost, time, and labor. Heterozygous ${\alpha}GT$ knockout pigs should be bred at least for two generations to ultimately obtain homozygote progenies. The present study was conducted to produce ${\alpha}GT$-deficient miniature pigs in much reduced time using mitotic recombination in neonatal ear skin fibroblasts. Methods: Miniature pig fibroblasts were transfected with ${\alpha}GT$ gene-targeting vector. Resulting gene-targeted fibroblasts were used for nuclear transfer (NT) to produce heterozygous ${\alpha}GT$ gene-targeted piglets. Fibroblasts isolated from ear skin biopsies of these piglets were cultured for 6 to 8 passages to induce loss of heterozygosity (LOH) and treated with biotin-conjugated IB4 that binds to galactose-${\alpha}$-1,3-galactose, an epitope produced by ${\alpha}GT$. Using magnetic activated cell sorting, cells with monoallelic disruption of ${\alpha}GT$ were removed. Remaining cells with LOH carrying biallelic disruption of ${\alpha}GT$ were used for the second round NT to produce homozygous ${\alpha}GT$ gene-targeted piglets. Results: Monoallelic mutation of ${\alpha}GT$ gene was confirmed by polymerase chain reaction in fibroblasts. Using these cells as nuclear donors, three heterozygous ${\alpha}GT$ gene-targeted piglets were produced by NT. Fibroblasts were collected from ear skin biopsies of these piglets, and homozygosity was induced by LOH. The second round NT using these fibroblasts resulted in production of three homozygous ${\alpha}GT$ knockout piglets. Conclusion: The present study demonstrates that the time required for the production of ${\alpha}GT$-deficient miniature pigs could be reduced significantly by postnatal skin biopsies and subsequent selection of mitotic recombinants. Such procedure may be beneficial for the production of homozygote knockout animals, especially in species, such as pigs, that require a substantial length of time for breeding.

ROLE OF DCC(DELETED IN COLORECTAL CANCER) GENE IN ORAL SQUAMOUS CELL CARCINOMA (구강편평상피암종에서 DCC 유전자의 역할)

  • Ko, Seong-Kyu;Han, Se-Jin;Kim, Kyung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.5
    • /
    • pp.518-524
    • /
    • 2008
  • Chromosome 18q alteration plays a key role in colorectal tumorigenesis, and loss of heterozygosity at 18q is associated with a poor prognosis in colon cancer. DCC(Deleted in Colorectal Cancer) is a putative tumor- suppressor gene at 18q21 that encodes a transmembrane protein with structural similarity to neural cell adhesion molecule that is involved in both epithelial and neuronal cell differentiation. DCC is implicated in regulation of cell growth, survival and proliferation. Thus, tumor progression in squamous cell carcinoma, stomach cancer, colorectal cancer correlates with downregulation of DCC expression. The mechanism for DCC suppression is associated with hypermethylation of the DCC gene promoter region. Hence, the goal of this study is to identify the promoter methylation responsible for the down-regulation of DCC expression in oral squamous cell carcinoma. 12 of tissue specimens for the study are excised and gathered from 12 patients who are diagnosed as SCC in department of OMS, dental hospital, dankook university. To find expression of DCC in each tissue samples, immunohistochemical staining, RT-PCR gene analysis and methylation specific PCR are processed. The results are as follows. 1. In the DCC gene RT-PCR analysis, 5(41.6%) of 12 specimens of oral squamous cell carcinoma did not expressed DCC gene. 2. In the promoter methylation specific PCR analysis, 5(41.6%) of 12 specimens showed promoter methylation of DCC gene. 3. In the immunohistochemical staining of poor differentiated and invasive oral squamous cell carcinoma, loss of DCC expression was observed. These findings suggest that methylation of the DCC gene may play a role in loss of gene expression in invasive oral squamous cell carcinoma.

Role of MYH Polymorphisms in Sporadic Colorectal Cancer in China: A Case-control, Population-based Study

  • Yang, Liu;Huang, Xin-En;Xu, Lin;Zhou, Jian-Nong;Yu, Dong-Sheng;Zhou, Xin;Li, Dong-Zheng;Guan, Xin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.11
    • /
    • pp.6403-6409
    • /
    • 2013
  • Purpose: Biallelic germline variants of the 8-hydroxyguanine (8-OG) repair gene MYH have been associated with colorectal neoplasms that display somatic $G:C{\rightarrow}T:A$ transversions. However, the effect of single germline variants has not been widely studied, prompting the present investigation of monoallelic MYH variants and susceptibility to sporadic colorectal cancer (CRC) in a Chinese population. Patients and Methods: Between January 2006 and December 2012, 400 cases of sporadic CRC and 600 age- and sex-matched normal blood donors were screened randomly for 7 potentially pathogenic germline MYH exons using genetic testing technology. Variants of heterozygosity at the MYH locus were assessed in both sporadic cancer patients and healthy controls. Univariate and multivariate analyses were performed to determine risk factors for cancer onset. Results: Five monoallelic single nucleotide polymorphisms (SNPs) were identified in the 7 exon regions of MYH, which were detected in 75 (18.75%) of 400 CRC patients as well as 42 (7%) of 600 normal controls. The region of exon 1 proved to be a linked polymorphic region for the first time, a triple linked variant including exon 1-316 $G{\rightarrow}A$, exon 1-292 $G{\rightarrow}A$ and intron 1+11 $C{\rightarrow}T$, being identified in 13 CRC patients and 2 normal blood donors. A variant of base replacement, intron 10-2 $A{\rightarrow}G$, was identified in the exon 10 region in 21 cases and 7 controls, while a similar type of variant in the exon 13 region, intron 13+12 $C{\rightarrow}T$, was identified in 8 cases and 6 controls. Not the only but a newly missense variant in the present study, p. V463E (Exon 14+74 $T{\rightarrow}A$), was identified in exon 14 in 6 patients and 1 normal control. In exon 16, nt. 1678-80 del GTT with loss of heterozygosity (LOH) was identified in 27 CRC cases and 26 controls. There was no Y165C in exon 7 or G382D in exon 14, the hot-spot variants which have been reported most frequently in Caucasian studies. After univariate analysis and multivariate analysis, the linked variant in exon 1 region (p=0.002), intron 10-2 $A{\rightarrow}G$ (p=0.004) and p. V463E (p=0.036) in the MYH gene were selected as 3 independent risk factors for CRC. Conclusions: According to these results, the linked variant in Exon 1 region, Intron 10-2 $A{\rightarrow}G$ of base replacement and p. V463E of missense variant, the 3 heterozygosity variants of MYH gene in a Chinese population, may relate to the susceptibility to sporadic CRC. Lack of the hot-spot variants of Caucasians in the present study may due to the ethnic difference in MYH gene.

Roles of PTEN (Phosphatase and Tensin Homolog) in Gastric Cancer Development and Progression

  • Xu, Wen-Ting;Yang, Zhen;Lu, Nong-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2014
  • Gastric cancer is highly invasive, aggressively malignant, and amongst the most prevalent of all forms of cancer. Despite improved management strategies, early stage diagnosis of gastric cancer and accurate prognostic assessment is still lacking. Several recent reports have indicated that the pathogenesis of gastric cancer involves complex molecular mechanisms and multiple genetic and epigenetic alterations in oncogenes and tumor suppressor genes. Functional inactivation of the tumor suppressor protein PTEN (Phosphatase and Tensin Homolog) has been detected in multiple cases of gastric cancer, and already shown to be closely linked to the development, progression and prognosis of the disease. Inactivation of PTEN can be attributed to gene mutation, loss of heterozygosity, promoter hypermethylation, microRNA- mediated regulation of gene expression, and post-translational phosphorylation. PTEN is also involved in mechanisms regulating tumor resistance to chemotherapy. This review provides a comprehensive analysis of PTEN and its roles in gastric cancer, and emphasizes its potential benefits in early diagnosis and gene therapy-based treatment strategies.

Neonatal Silver-Russell syndrome assumed to result from maternal uniparental heterodisomy of chromosome 7

  • Kang, Yoongu;Kim, Jinsup;Lee, Hyun Ju;Park, Hyun Kyung
    • Journal of Genetic Medicine
    • /
    • v.17 no.2
    • /
    • pp.83-88
    • /
    • 2020
  • Silver-Russell syndrome (SRS) is a rare genetic disorder characterized by intrauterine growth restriction, poor postnatal growth, relative macrocephaly, a triangular face, body asymmetry, and feeding difficulties. It is primarily diagnosed according to a clinical scoring system; however, the clinical diagnosis is confirmed with molecular testing, and the disease is stratified into the specific molecular subtypes. SRS is a genetically heterogeneous condition. The major molecular changes are hypomethylation of imprinting control region 1 in 11p15.5 and maternal uniparental disomy of chromosome 7 (UPD(7)mat). Therefore, first-line molecular testing should include methylation-specific approaches for these regions. Here, we report an extremely low birth weight (ELBW) infant with intrauterine growth retardation, postnatal growth retardation, and dysmorphic facial appearance-characteristics consistent with the clinical diagnostic criteria of SRS. Methylation-specific molecular genetic analysis revealed UPD(7)mat, while the loss of heterozygosity was not detected on chromosomal microarray analysis. We present a case of SRS with suspected uniparental heterodisomy of chromosome 7 in an ELBW infant.

Allozyme Variation and Population Genetic Structure of an Invasive Plant, Ageratina altissima(White Snakeroot), in Seoul

  • Chun, Young-Jin;Lee, Hyun-Woo;Lee, Eun-Ju
    • Animal cells and systems
    • /
    • v.5 no.4
    • /
    • pp.309-312
    • /
    • 2001
  • Allozyme studies have been widely used to estimate genetic variation and to describe genetic structure in natural populations. In many cases, the genetic diversity of recently established populations is generally lower than that of central populations. In addition, the genetic composition of an invasive species is influenced by its History of introduction as well as its ecological characters. Ageratina altissima (L.) R. King & H. Robinson (white snakeroot) is a perennial herb native to the eastern United States and Canada, and is currently receiving much attention for its rapid invasion of the Korean forests. Starch gel electrophoresis was used to assess the genetic variability at 11 putative loci in seven introduced populations of A. altissima in Seoul. Populations of A. altissima maintained lower levels of allozyme diversity (expected heterozygosity = 0.063) than those reported for other taxa with similar ecological traits. The degree of differentiation observed among A. altissima populations was considerably low. It is suggested that the populations were recently established from only a few founders via dispersal by human activities, resulting in the loss of genetic variation.

  • PDF

Identification of a Novel Rb-regulated Gene Associated with the Cell Cycle

  • Sung, Young Hoon;Kim, Hye Jin;Lee, Han-Woong
    • Molecules and Cells
    • /
    • v.24 no.3
    • /
    • pp.409-415
    • /
    • 2007
  • The retinoblastoma (Rb) gene is one of the most important genes in cell cycle regulation and tumorigenesis. Homozygosity for a germ-line Rb mutation results in embryonic lethality and evokes developmental defects associated with inappropriate S-phase entry and high levels of apoptosis. Although Rb has been extensively studied, more target genes need to be identified and characterized to unravel the precise mechanism of Rb function. In order to identify Rb-regulated genes, we analyzed the gene expression profile of Rb-deficient mouse embryo fibroblasts (MEFs), and identified an unknown gene, RbEST47, that is transcriptionally upregulated in Rb-deficient MEFs. This gene is conserved from fruitfly to human. It is expressed in brain, lung, kidney, and testis, and is located on mouse chromosome 2. This region is syntenic to human chromosome 9q34.3, which frequently exhibits loss of heterozygosity in neoplastic diseases. RbEST47 was considerably down-regulated in immortalized cells, and showed cell cycle-dependent expression, suggesting important roles in S and/or G2.

Genetic Variation in Wild and Cultured Populations of the Sea Squirt Halocynthia roretzi Inferred from Microsatellite DNA Analysis

  • Han, Hyon-Sob;Nam, Bo-Hye;Kang, Jung-Ha;Kim, Yi-Kyoung;Jee, Young-Ju;Hur, Young-Baek;Yoon, Moon-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.2
    • /
    • pp.151-155
    • /
    • 2012
  • We used nine microsatellite DNA markers to estimate genetic variation among wild and cultured populations of the sea squirt Halocynthia roretzi. The loci were polymorphic, with 6-32 alleles, and allelic richness ranged from 6.0 to 26.1 in each population. The wild and the cultured populations had similar mean heterozygosities ($H_O$ and $H_E$), allele numbers, and allelic richness. One cultured population with softness syndrome had a lower mean in the observed heterozygosity ($H_O$ = 0.57) and higher mean inbreeding coefficient ($F_{IS}$ = 0.261) than any other populations. This suggests that the loss of genetic variation in the diseased population might be due to increased inbreeding. A neighbor-joining tree and pairwise population estimates of $F_{ST}$ showed moderate genetic differentiation between the wild and the cultured populations. Additionally, the softness syndrome population was genetically divergent from wild populations, but it was genetically close to the cultured populations.

PATHWAYS AND GENES OF DNA DOUBLE-STRAND BREAK REPAIR ASSOCIATED WITH HEAD AND NECK CANCER (DNA 이중나선파손의 수복 과정과 이와 연관된 두경부암 발생 유전자)

  • Oh, Jung-Hwan;Lee, Deok-Won;Ryu, Dong-Mok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • DNA double-strand breaks (DSBs) occur commonly in the all living and in cycling cells. They constitute one of the most severe form of DNA damage, because they affect both strand of DNA. DSBs result in cell death or a genetic alterations including deletion, loss of heterozygosity, translocation, and chromosome loss. DSBs arise from endogenous sources like metabolic products and reactive oxygen, and also exogenous factors like ionizing radiation. Defective DNA DSBs can lead to toxicity and large scale sequence rearrangement that can cause cancer and promote premature aging. There are two major pathways for their repair: homologous recombination(HR) and non-homologous end-joining(NHEJ). The HR pathway is a known "error-free" repair mechanism, in which a homologous sister chromatid serves as a template. NHEJ, on the other hand, is a "error-prone" pathway, in which the two termini of the broken DNA molecule are used to form compatible ends that are directly ligated. This review aims to provide a fundamental understanding of how HR and NHEJ pathways operate, cause genome instability, and what kind of genes during the pathways are associated with head and neck cancer.

Loss of the Retinoblastoma Gene in Non-Small Cell Lung Cancer (비소세포폐암에서의 망막모세포종유전자의 소실)

  • Lee, Choon-Taek;Kim, Chang-Min;Zo, Jae-Ill;Shim, Young-Mog;Hong, Weon-Seon;Lee, Jhin-Oh;Kang, Tae-Woong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.40 no.2
    • /
    • pp.98-103
    • /
    • 1993
  • Background: Inactivation of retinoblastoma gene (Rb) has been observed in a variety of human cancers. Loss of heterozygosity (LOH) of Rb which is a common mode of allelic inactivation of Rb, has been known as a frequent genetic event in small cell lung cancer but it has been detected less frequently in non-small cell lung cancer. To define the role of Rb deletion in lung cancer, we investigated the genomic DNAs of 43 non-small cell lung cancers and 1 small cell lung cancer paired with normal lung tissues obtained by thoracotomy. Methods: The genomic DNAs were obtained by the digestion with proteinase K followed by phenol-chloroform extraction method. The genomic DNAs were digested by restriction endonuclease (EcoRI), separated by agarose gel electrophoresis, transferred to nylon membrane by Southern blot transfer and then hybridized with labelled Rb 1 probe which contains. 1.4 kb sized DNA sequence containing N-terminal portion of Rb. Results: In 26 squamous cell lung cancers, 16 cases were informative after EcoRI digestion and LOH of Rb was found in 10 cases (62.5%). In 17 adenocarcinomas of lung, 11 cases were informative and LOH of Rb was found in five cases (45.4%). The analysis of clinical parameters revealed no significant differences between the two groups with or without LOH of Rb in the aspects of age, sex, degree of differentiation, stage and smoking amount. Conclusions: These results suggest that Rb inactivation is also significantly involved in the molecular pathogenesis of non-small cell lung cancer.

  • PDF