• Title/Summary/Keyword: Loss of Load Expectation

Search Result 14, Processing Time 0.028 seconds

Calculation of Loss of Load Expectation and Loss of Load Frequency using a Moment matching method (모멘트 대입법에 의한 전력부족 기대치와 빈도수의 산정)

  • Yoo, Hyun-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1076-1078
    • /
    • 1998
  • This paper proposes a new approach for calculating frequency and duration by using the moment matching technique. Two separate expressions are derived, one for the loss of load expectation(LOLE) and the other for the loss of load frequency(LOLF). These expressions are combination of exponentials and are therefore easily integrable and can be readily evaluated. The proposed approach is quite comparable of with the other methods at the aspect of accuracy and efficiency.

  • PDF

A Study on Decision of Optimum Installed Reserve Rate using Probabilistic Reliability Criterion (확률론적인 신뢰도기준에 의한 적정설비예비율의 결정에 관한 연구)

  • Park, Jeong-Jae;Choi, Jae-Seok;Yun, Yong-Bum;Jung, Young-Bum
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1318-1326
    • /
    • 2008
  • This paper proposes an alternative methodology for deciding an optimum deterministic reliability level (IRR; Installed Reserve Rate) by using probabilistic reliability criterion (LOLE; Loss of Load Expectation). Additionally, case studies using the proposed method induce the characteristics of relationship between the probabilistic reliability index (LOLE) and deterministic reliability index (IRR) for 2008 and 2010 years in Korea power system. The case study presents a possibility that an optimum IRR level in Korea can be assessed using the proposed method. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion in Korea is that the loss of load expectation shall not exceed the available capacity more than five day in ten years (=0.5[days/year]), The probabilistic reliability evaluation and production cost simulation program which is called PRASim is used in order to evaluate the relationship and optimum IRR in this paper.

A Study on the Decision of Optimum Installed Reserve Rate by Loss of Load Expectation (공급지장기대치에 의한 적정설비예비율 결정에 관한 연구)

  • Park, Jeong-Je;Liang, Wu;Choi, Jae-Seok;Cha, Jun-Min;Yun, Yong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.103-104
    • /
    • 2008
  • This paper proposes an alternative methodology for deciding an optimum deterministic reliability level (IRR; Installed Reserve Rate) by using probabilistic reliability criterion (LOLE; Loss of Load Expectation). Additionally, case studies using the proposed method induce the characteristics of relationship between the probabilistic reliability index (LOLE) and deterministic reliability index (IRR) for 2008 year in Korea power system. The case study presents a possibility that an optimum IRR level in Korea can be assessed using the proposed method. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion in Korea is that the loss of load expectation shall not exceed the available capacity more than five day in ten years (=0.5[days/year]). The probabilistic reliability evaluation and production cost simulation program which is called PRASim is used in order to evaluate the relationship and optimum IRR in this paper.

  • PDF

Conversion Function and Relationship of Loss of Load Expectation Indices on Two Kinds of Load Duration Curve (두 종류의 부하곡선에 관한 공급지장시간기대치(LOLE)의 상호 변환관계성)

  • Lee, Yeonchan;Oh, Ungjin;Choi, Jaeseok;Cha, Junmin;Choi, Hongseok;Jeon, Donghun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.475-485
    • /
    • 2017
  • This paper develops a conversion function and method transforming from daily peak load curve used $LOLE_D$ [days/year] to hourly load curve used $LOLE_H$[hours/year]and describes relationship between $LOLE_D$ [days/year] and $LOLE_H$ [hours/year]. The indices can not only be transformed just arithmetically but also have different characteristics physically because of using their different load curves. The conversion function is formulated as variables of capacity and forced outage rate of generator, hourly load daily load factor and daily peak load yearly load factor, etc. Therefore, the conversion function (${\gamma}={\varphi}$(.)) can not be simple. In this study, therefore, the function is formulated as linear times of separated two functions. One is an exponential formed conversion function of daily load factor. Another is formulated with an exponential typed conversion function of daily peak load yearly load factor. Futhermore, this paper presents algorithm and flow chart for transforming from $LOLE_D$[days/year] to $LOLE_H$[hours/year]. The proposed conversion function is applied to sample system and actual KPS(Korea Power System) in 2015. The exponent coefficients of the conversion functions are assessed using proposed method. Finally, assessment errors using conversion function for case studies of sample system and actual system are evaluated to certify the firstly proposed method.

LOLE(Loss of Load Expctatiom) Evaluation using Fuzzy Set Theory (퍼지 집합 이론을 이용한 공급지장 기대치의 산정)

  • 심재홍;정현수;김진오
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.9
    • /
    • pp.1055-1063
    • /
    • 1999
  • This paper present a conceptual possibilistic approach using fuzzy set theory to manage the uncertainties in the given reliability input date of the practical power system. In this paper, an algorithm is introduced to calculate the possibilstic reliability indices according to the degree of uncertainty in the given data. The probability distribution function can be transformed into an appropriate possibilstic representation using the probability-Possibility Consistency principle(PPCP) algorithm. In this the algorithm, the transformation is performation by making a compromise between the transformation consistency and the human updating experience. Fuzzy classifcation theory is applied to reduced the number of load data. The fuzzy classification method determines the closeness of load data points by assigning them to various clusters and then determening the distance between the clusters. The IEEE-RTS with 32-generating units is used to demonstrate the capability of the proposed algorithm.

  • PDF

Evaluation of Reliability Indices for Power Systems using Genetic Algorithm and Complex Method (유전알고리즘과 Complex Method를 이용한 전력시스템의 신뢰도 지수 산정)

  • 유현호;김진오
    • Journal of Energy Engineering
    • /
    • v.8 no.4
    • /
    • pp.583-591
    • /
    • 1999
  • this paper proposes a new approach for calculating the reliability indices of generation system, such as interruption frequency and duration, by using the moment matching technique Two separate expressions are derived, one for the loss of load expectation(LOLE) and the other for the loss of load frequency (LOLF). These expressions are combination of exponentials and are therefore easily integrable and can be readily evaluated. In this paper, the parameters of the distribution functions of the LOLE and LOLF are evaluated by using Genetic Algorithm and Complex Method, and the proposed approach is quite comparable with the other methods at the aspect of accuracy and efficiency.

  • PDF

A Study on Probabilistic Optimal Reliability Criterion Determination in Transmission System Expansion Planning (송전계통확충계획을 위한 확률론적 최적신뢰도 기준설정에 관한 연구)

  • Tran, TrungTinh;Kwon, Jung-Ji;Choi, Jae-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.748-750
    • /
    • 2005
  • This paper approaches a methodology for deciding the optimal reliability criteria for an optimal composite power system expansion planning considering generation and transmission systems simultaneously. A probabilisticreliability criterion, $LOLE_R$(Loss of Load Expectation), is used in this study. The optimalreliability criterion $LOLE_R*$ is decided at minimum cost point of total cost curve which is the sum of the utility cost associated with construction cost and the customer outage cost associated with supply interruptions for load considering forced outage rates of elements(generators and lines) in long term forecasting. The characteristicsand effectiveness of this methodology are illustrated by the case study using MRBTS size system.

  • PDF

Evaluation of IEAR(Interrupted Energy Assessment Rates) using Macro Approach in Korea (거시적방법에 의한 우리나라의 종합공급지장비단가 추정)

  • Park, Jeong-Je;Wu, Liang;Choi, Jae-Seok;Jung, Yong-Bum;Yoon, Yong-Bum
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.309-311
    • /
    • 2008
  • This paper introduces the characteristics of relationship between probabilistic reliability (LOLE; Loss of Load Expectation) and deterministic reliability (SRR; supply reserve rate) for 2008 year in Korea power system. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion is that load shall not exceed the avaliable capacity, on the average, more than five day in ten years. The probabilistic reliability evaluation and production cost simulation program which is called PPHFHT was used in order to obtain the relationship in this paper.

  • PDF

A study on the Characteristics of Relationship Between Probabilistic Reliability and Supply Reserve Rate in Korea Power System (우리나라에서의 확률론적인 신뢰도와 공급예비율의 상관관계성에 관한 연구)

  • Park, Jeong-Je;Jeong, S.H.;Shi, B.;Wu, L.;Choi, J.S.;Yoon, Y.B.;Jung, Y.B.;Cha, J.M.;Yoon, Y.T.
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.173-175
    • /
    • 2007
  • This paper introduces the characteristics of relationship between probabilistic reliability (LOLE; Loss of Load Expectation) and deterministic reliability (SRR; supply reserve rate) for 2008 year in Korea power system. Korea power system has been using the LOLE criterion to determine the adequacy of installed capacity (ICAP) requirement. The criterion is that load shall not exceed the avaliable capacity, on the average, more than five day in ten years. The probabilistic reliability evaluation and production cost simulation program which is called PPHFHT was used in order to obtain the relationship in this paper.

  • PDF

Impact Analysis of Wind Power on Power System Reliability with Electric Vehicles (풍력발전과 전기자동차가 전력계통의 신뢰도에 미치는 영향 평가)

  • Kim, Dam;Park, Hyeongon;Kwon, Hungyu;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1535-1542
    • /
    • 2015
  • An increasing number of electric vehicles (EVs) in power system affects its reliability in various aspects. Especially under high EV penetration level, new generating units are required to satisfy system's adequacy criterion. Wind power generation is expected to take the major portion of the new units due to environmental and economic issues. In this paper, the system reliability is analyzed using Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS) under each and both cases of increasing wind power generation and EVs. A probabilistic multi-state modeling method of wind turbine generator under various power output for adequate reliability evaluation is presented as well. EVs are modeled as loads under charging algorithm with Time-Of-Use (TOU) rates in order to incorporate EVs into hour-to-hour yearly load curve. With the expected load curve, the impact of EVs on the system adequacy is analyzed. Simulations show the reliability evaluation of increasing wind power capacity and number of EVs. With this method, system operator becomes capable of measuring appropriate wind power capacity to meet system reliability standard.