• Title/Summary/Keyword: Loss model-based control

Search Result 225, Processing Time 0.03 seconds

A Design of Economic CUSUM Control Chart Incorporating Quality Loss Function (품질손실을 고려한 경제적 CUSUM 관리도)

  • Kim, Jungdae
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.41 no.4
    • /
    • pp.203-212
    • /
    • 2018
  • Quality requirements of manufactured products or parts are given in the form of specification limits on the quality characteristics of individual units. If a product is to meet the customer's fitness for use criteria, it should be produced by a process which is stable or repeatable. In other words, it must be capable of operating with little variability around the target value or nominal value of the product's quality characteristic. In order to maintain and improve product quality, we need to apply statistical process control techniques such as histogram, check sheet, Pareto chart, cause and effect diagram, or control charts. Among those techniques, the most important one is control charting. The cumulative sum (CUSUM) control charts have been used in statistical process control (SPC) in industries for monitoring process shifts and supporting online measurement. The objective of this research is to apply Taguchi's quality loss function concept to cost based CUSUM control chart design. In this study, a modified quality loss function was developed to reflect quality loss situation where general quadratic loss curve is not appropriate. This research also provided a methodology for the design of CUSUM charts using Taguchi quality loss function concept based on the minimum cost per hour criterion. The new model differs from previous models in that the model assumes that quality loss is incurred even in the incontrol period. This model was compared with other cost based CUSUM models by Wu and Goel, According to numerical sensitivity analysis, the proposed model results in longer average run length in in-control period compared to the other two models.

The Energy Saving for Separately Excited DC Motor Drive via Model Based Method

  • Udomsuk, Sasiya;Areerak, Kongpol;Areerak, Kongpan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.470-479
    • /
    • 2016
  • The model based method for energy saving of the separately excited DC motor drive system is proposed in the paper. The accurate power loss model is necessary for this method. Therefore, the adaptive tabu search algorithm is applied to identify the parameters in the power loss model. The field current values for minimum power losses at any load torques and speeds are calculated by the proposed method. The rule based controller is used to control the field current and speed of the motor. The experimental results confirm that the model based method can successfully provide the energy saving for separately excited DC motor drive. The maximum value of the energy saving is 48.61% compared with the conventional drive method.

Loss Minimizing Vector Control of Interior Permanent Magnet Synchronous Motor (매입형 영구자석 동기전동기의 최소 손실 벡터제어)

  • Chung, Euihoon;Lee, Yongjae;Ha, Jung-Ik
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.4
    • /
    • pp.330-336
    • /
    • 2015
  • This paper presents a loss-minimizing vector control method for interior permanent magnet synchronous motor (IPMSM). Conventionally, maximum torque per ampere (MTPA) control, which minimizes copper loss, has been widely used in industry. Iron loss, however, is not considered in MTPA control. In this paper, the loss model, including iron loss and copper loss, is derived to further reduce drive loss. The loss-minimizing vector controller is implemented based on the loss model. The controller generates optimal current vectors according to the operating conditions. The performance and validity of the proposed method are proved by experimental results through comparison with conventional methods.

Model-Based Loss Minimization Control for Induction Generators - in Wind Power Generation Systems (모델 기반의 풍력발전용 유도발전기의 최소 손실 제어)

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.7
    • /
    • pp.380-388
    • /
    • 2006
  • In this paper, a novel control algorithm to minimize the power loss of the induction generator for wind power generation system is presented. The proposed method is based on the flux level reduction, where the flux level is computed from the machine model for the optimum d-axis current of the generator. For the vector-controlled induction generator, the d-axis current controls the excitation level in order to minimize the generator loss while the q-axis current controls the generator torque, by which the speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power. Wind turbine simulator has been implemented in laboratory to validate the theoretical development. The experimental results show that the loss minimization process is more effective at low wind speed and that the percent of power loss saving can approach to 25%. Experimental results are shown to verify the validity of the proposed scheme.

Simulation Analysis of the Neural Network Based Missile Adaptive Control with Respect to the Model Uncertainty (신경회로망 기반 미사일 적응제어기의 모델 불확실 상황에 대한 시뮬레이션 연구)

  • Sung, Jae-Min;Kim, Byoung-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.329-334
    • /
    • 2010
  • This paper presents the design of a neural network based adaptive control for missile. Acceleration of missile by tail fin control cannot be controllable by DMI (Dynamic Model Inversion) directly because it is non-minimum phase system. To avoid the non-minimum phase system, dynamic model inversion is applied with output-redefinition method. In order to evaluate performance of the suggested controllers we selected the three cases such as control surface fail, control surface loss and wing loss for model uncertainty. The corresponding aerodynamic databases to the failure cases were calculated by using the Missile DATACOM. Using a high fidelity 6DOF simulation program of the missile the performance was evaluates.

A Simple Model for TCP Loss Recovery Performance over Wireless Networks

  • Kim, Beomjoon;Lee, Jaiyong
    • Journal of Communications and Networks
    • /
    • v.6 no.3
    • /
    • pp.235-244
    • /
    • 2004
  • There have been a lot of approaches to evaluate and predict transmission control protocol (TCP) performance in a numerical way. Especially, under the recent advance in wireless transmission technology, the issue of TCP performance over wireless links has come to surface. It is because TCP responds to all packet losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. By several previous works, although it has been already proved that overall TCP performance is largely dependent on its loss recovery performance, there have been few works to try to analyze TCP loss recovery performance with thoroughness. In this paper, therefore, we focus on analyzing TCP's loss recovery performance and have developed a simple model that facilitates to capture the TCP sender's behaviors during loss recovery period. Based on the developed model, we can derive the conditions that packet losses may be recovered without retransmission timeout (RTO). Especially, we have found that TCP Reno can retransmit three packet losses by fast retransmits in a specific situation. In addition, we have proved that successive three packet losses and more than four packet losses in a window always invoke RTO easily, which is not considered or approximated in the previous works. Through probabilistic works with the conditions derived, the loss recovery performance of TCP Reno can be quantified in terms of the number of packet losses in a window.

Model-based Optimal Control Algorithm for the Clamp Switch of Zero-Voltage Switching DC-DC Converter

  • Ahn, Minho;Park, Jin-Hyuk;Lee, Kyo-Beum
    • Journal of Power Electronics
    • /
    • v.17 no.2
    • /
    • pp.323-333
    • /
    • 2017
  • This paper proposes a model-based optimal control algorithm for the clamp switch of a zero-voltage switching (ZVS) bidirectional DC-DC converter. The bidirectional DC-DC converter (BDC) can accomplish the ZVS operation using the clamp switch. The minimum current for the ZVS operation is maintained, and the inductor current is separated from the input and output voltages by the clamp switch in this topology. The clamp switch can decrease the inductor current ripple, switching loss, and conduction loss of the system. Therefore, the optimal control of the clamp switch is significant to improve the efficiency of the system. This paper proposes a model-based optimal control algorithm using phase shift in a micro-controller unit. The proposed control algorithm is demonstrated by the results of PSIM simulations and an experiment conducted in a 1-kW ZVS BDC system.

System Identification of Internet transmission rate control factors

  • Yoo, Sung-Goo;Kim, Young-Seok;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.652-657
    • /
    • 2004
  • As the real-time multimedia applications through Internet increase, the bandwidth available to TCP connections is oppressed by the UDP traffic, result in the performance of overall system is extremely deteriorated. Therefore, developing a new transmission protocol is necessary. The TCP-friendly algorithm is an example meeting this necessity. The TCP-friendly (TFRC) is an UDP-based protocol that controls the transmission rate based on the available round transmission time (RTT) and the packet loss rate (PLR). In the data transmission processing, transmission rate is determined based on the conditions of the previous transmission period. If the one-step ahead predicted values of the control factors are available, the performance will be improved significantly. This paper proposes a prediction model of transmission rate control factors that will be used for the transmission rate control, which improves the performance of the networks. The model developed through this research is predicting one-step ahead variables of RTT and PLR. A multiplayer perceptron neural network is used as the prediction model and Levenberg-Marquardt algorithm is used for the training. The values of RTT and PLR were collected using TFRC protocol in the real system. The obtained prediction model is validated using new data set and the results show that the obtained model predicts the factors accurately.

  • PDF

Efficiency Optimization Control of IPMSM Drive using Multi AFLC (다중 AFLC를 이용한 IPMSM 드라이브의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.59 no.3
    • /
    • pp.279-287
    • /
    • 2010
  • Interior permanent magnet synchronous motor(IPMSM) adjustable speed drives offer significant advantages over induction motor drives in a wide variety of industrial applications such as high power density, high efficiency, improved dynamic performance and reliability. This paper proposes efficiency optimization control of IPMSM drive using adaptive fuzzy learning controller(AFLC). In order to optimize the efficiency the loss minimization algorithm is developed based on motor model and operating condition. The d-axis armature current is utilized to minimize the losses of the IPMSM in a closed loop vector control environment. The design of the current based on adaptive fuzzy control using model reference and the estimation of the speed based on neural network using ANN controller. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM. The optimal current can be decided according to the operating speed and the load conditions. This paper considers the design and implementation of novel technique of high performance speed control for IPMSM using AFLC. Also, this paper proposes speed control of IPMSM using AFLC1, current control of AFLC2 and AFLC3, and estimation of speed using ANN controller. The proposed control algorithm is applied to IPMSM drive system controlled AFLC, the operating characteristics controlled by efficiency optimization control are examined in detail.

Supplementary analyses of economic X over bar chart model

  • Jeon, Tae-Bo
    • Korean Management Science Review
    • /
    • v.12 no.1
    • /
    • pp.111-124
    • /
    • 1995
  • With the increasing interest of reducing process variation, statistical process control has served the pivotal tool in most industrial quality programs. In this study, system analyses have been performed associated with a cost incorporated version of a process control, a quadratic loss-based X over bar control chart model. Specifically, two issues, the capital/research investments for improvement of a system and the precision of a parameter estimation, have been addressed and discussed. Through the analysis of experimental results, we show that process variability is seen to be one of the most important sources of loss and quality improvement efforts should be directed to reduce this variability. We further derive the results that, even if the optimal designs may be sensitive, the model appears to be robust with regard to misspecification of parameters. The approach and discussion taken in this study provide a meaningful guide for proper process control. We conclude this study with providing general comments.

  • PDF