• Title/Summary/Keyword: Loss distribution

Search Result 2,124, Processing Time 0.027 seconds

Characteristics of a 190 kVA Superconducting Fault current Limiting Element (190 kVA급 초전도한류소자의 특성)

  • Ma, Y.H.;Li, Z.Y.;Park, K.B.;Oh, I.S.;Ryu, K.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.37-42
    • /
    • 2007
  • We are developing a 22.9 kV/25 MVA superconducting fault current limiting(SFCL) system for a power distribution network. A Bi-2212 bulk SFCL element, which has the merits of large current capacity and high allowable electric field during fault of the power network, was selected as a candidate for our SFCL system. In this work, we experimentally investigated important characteristics of the 190 kVA Bi-2212 SFCL element in its application to the power grid e.g. DC voltage-current characteristic, AC loss, current limiting characteristic during fault, and so on. Some experimental data related to thermal and electromagnetic behaviors were also compared with the calculated ones based on numerical method. The results show that the total AC loss at rated current of the 22.9 kV/25 MVA SFCL system, consisting of one hundred thirty five 190 kVA SFCL elements, becomes likely 763 W, which is excessively large for commercialization. Numerically calculated temperature of the SFCL element in some sections is in good agreement with the measured one during fault. Local temperature distribution in the190 kVA SFCL element is greatly influenced by non-uniform critical current along the Bi-2212 bulk SFCL element, even if its non-uniformity becomes a few percentages.

A Study on Process Capability Index using Reflected Normal Loss Function (역정규 손실함수를 이용한 공정능력지수에 관한 연구)

  • 정영배;문혜진
    • Journal of Korean Society for Quality Management
    • /
    • v.30 no.3
    • /
    • pp.66-78
    • /
    • 2002
  • Process capability indices are being used as indicators for measurements of process capability for SPC of quality assurance system in industries. In view of the enhancement of customer satisfaction, process capability indices in which loss functions are used to deal with the economic loss In the processes deviated from the target, are in an adequate representation of the customer's perception of quality In this connection, the loss function has become increasingly important in quality assurance. Taguchi uses a modified form of the quadratic loss function to demonstrate the need to consider the proximity to the target while assessing its quality. But this traditional quadratic loss function is inadequate to assessing the quality and quality improvement since different processes have different sets of economic consequences on the manufacturing, Thereby, a flexible approach to the development of the loss function needs to be desired. In this paper, we introduce an easily understood loss function, based on reflection of probability density function of the normal distribution. That is, the Reflected Normal Loss function can be adapted to an asymmetric loss as well as to a symmetric loss around the target. We propose that, instead of the process variation, a new capability index, CpI using the Reflected Normal Loss Function that can accurately reflect the losses associated with the process and a new capability index CpI Is compared with the classical indices as $C_{p}$ , $C_{pk}$, $C_{pm}$ and $C_{pm}$ $^{+}$.>.+/./.

Effects of the Inlet Boundary Layer Thickness on the Flow in an Axial Compressor(II) - Loss Mechanism - (입구 경계층 두께가 축류 압축기 내부 유동에 미치는 영향 (II) - 손실구조 -)

  • Choi, Min-Suk;Park, Jun-Young;Baek, Je-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.956-962
    • /
    • 2005
  • A three-dimensional computation was conducted to make a study about effects of the inlet boundary layer thickness on the total pressure loss in a low-speed axial compressor operating at the design condition ($\phi=85\%$) and near stall condition($\phi=65\%$). Differences of the tip leakage flow and hub corner-stall induced by the inlet boundary layer thickness enable the loss distribution of total pressure along the span to be altered. At design condition, total pressure losses for two different inlet boundary layers are almost alike in the core flow region but the larger loss is generated at both hub and tip when the inlet boundary layer is thin. At the near stall condition, however, total pressure loss fer the thick inlet boundary layer is found to be greater than that for the thin inlet boundary layer on most of the span except the region near hub and casing. Total pressure loss is scrutinized through three major loss categories in a subsonic axial compressor such as profile loss, tip leakage loss and endwall loss using Denton's loss model, and effects of the inlet boundary layer thickness on the loss structure are analyzed in detail.

Bayesian Estimation of the Reliability Function of the Burr Type XII Model under Asymmetric Loss Function

  • Kim, Chan-Soo
    • Communications for Statistical Applications and Methods
    • /
    • v.14 no.2
    • /
    • pp.389-399
    • /
    • 2007
  • In this paper, Bayes estimates for the parameters k, c and reliability function of the Burr type XII model based on a type II censored samples under asymmetric loss functions viz., LINEX and SQUAREX loss functions are obtained. An approximation based on the Laplace approximation method (Tierney and Kadane, 1986) is used for obtaining the Bayes estimators of the parameters and reliability function. In order to compare the Bayes estimators under squared error loss, LINEX and SQUAREX loss functions respectively and the maximum likelihood estimator of the parameters and reliability function, Monte Carlo simulations are used.

Markov Modeling of Multiclass Loss Systems (멀티클래스 손실시스템의 마코프 모델링)

  • Na, Seong-Ryong
    • The Korean Journal of Applied Statistics
    • /
    • v.23 no.4
    • /
    • pp.747-757
    • /
    • 2010
  • This paper studies the Markov modeling of multiclass loss systems supporting several kinds of customers. The concept of unit for loss systems is introduced and the method of equal probability allocation among units is especially considered. Equilibrium equations and limiting distribution of the loss systems are studied and loss probabilities are computed. We analyze an example of a simple system to gain an insight about general systems.

Aerosol Wall Loss in Teflon Film Chambers Filled with Ambient Air

  • Lee Seung-Bok;Bae Gwi-Nam;Moon Kil-Choo
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.E1
    • /
    • pp.35-41
    • /
    • 2004
  • Aerosol wall loss is an important factor affecting smog chamber experiments, especially with chambers made of Teflon film. In this work, the aerosol wall loss was investigated in 2.5 and $5.8-m^3$ cubic-shaped Teflon film chambers filled with ambient air. The natural change in the particle size distribution was measured using a scanning mobility particle sizer in a dark environment. The rate of aerosol wall loss was obtained from the deposition theory suggested by Crump and Seinfeld (1981). The measured rates of aero-sol wall loss were In a good agreement with the theoretical and experimental values given by McMurry and Rader (1985), implying that the electrostatic effect enhances particle deposition on the chamber wall. The significance of aerosol wall loss correction was demonstrated with the photochemical reaction experiments using the ambient air.

Measurement of Stator Core Loss of an Induction Motor at Each Manufacturing Process

  • Jeong, Kwangyoung;Ren, Ziyan;Yoon, Heesung;Koh, Chang-Seop
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.4
    • /
    • pp.1309-1314
    • /
    • 2014
  • The measurement of stator core loss for an induction motor at each manufacturing process is carried out in this paper. Iron loss in the stator core of induction motor changes after each manufacturing process due to the mechanical stress, which can cause the deterioration of the magnetic performances. This paper proposes a new iron loss measuring system of the stator core in an induction motor, which can be applied to the case when the distribution of magnetic flux density is not uniform along the magnetic flux path. In the system, the iron loss is calculated based on the induced voltage of the B-search coil and exciting current.

Review of the measurement uncertainty of Tr no-load loss measuring system (변압기철손 측정시스템의 측정 불확도)

  • Kang, T.S.
    • Proceedings of the KIEE Conference
    • /
    • 2005.11b
    • /
    • pp.139-141
    • /
    • 2005
  • For the reliable evaluation of the distribution and power transformer no-load loss measurement, measurement uncertainty of the transformer measuring system, consisted of current transformer, potential transformer and power metering equipment is required. In this paper, we describe the uncertainty of transformer measuring system based on ANSI/IEEE C57.12.90.

  • PDF

Effects of the Size and Distribution of Preflocculated GCC on the Physical Properties of Paper

  • Lee, Kyong-Ho;Lee, Hak-Lae;Youn, Hye-Jung
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.06a
    • /
    • pp.85-90
    • /
    • 2006
  • Increasing the filler content of sheet improves the optical properties and printability of paper and provides an opportunity for saving production cost through fiber replacement with relatively low-priced filler. But increasing the filler content tends to decrease the strength of paper and filler retention. It also tends to deteriorate drainage on the paper machine. To overcome these problems, preflocculation technology of fillers may be employed. Many research efforts have been made on the properties of preflocculated filler, namely prefloc, whose size and size distribution were influenced by polymer type and shear level. But there is much to be investigated about the effect of the prefloc characteristics on the physical properties of paper. To evaluate the effect cationic polymers on the size and size distribution of preflocculated GCC and their shear stability, cationic PAM and cationic starch were used. The influence of the preflocculation on filler retention and its surface distribution, and the changes of physical and optical properties of handsheets affected by the characteristics of preflocs were examined. Filler distribution on sheet surface was also analyzed by EPMA. Results showed that cationic PAM formed large preflocs at low dosage. Cationic starch was required to add 15 times as much as cationic PAM to obtain the preflocs with similar size. But preflocs formed with cationic starch was superior in shear stability to those formed with cationic PAM. Filler preflocculation technology could provide an opportunity of increasing filler content significantly without loss in tensile strength. And increased filler contents could compensate brightness loss which often accompanies filler preflocculation. When excessively large preflocs were used, however, brightness loss rather than the improvement in tensile strength was predominant. Therefore it is of great importance to produce preflocs with proper size and shear stability for maximizing the improvement of physical properties of papers.

  • PDF