• Title/Summary/Keyword: Loss distribution

Search Result 2,124, Processing Time 0.029 seconds

Influence of Current Distributions on Critical Current and AC Loss Characteristics in a 3-conductor (전류분포가 3본-도체의 임계전류/교류손실 특성에 미치는 영향)

  • 류경우;최병주
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.5
    • /
    • pp.418-423
    • /
    • 2003
  • AC loss is an important issue in the design of high-T$\sub$c/ superconducting power cables which consist of a number of Bi-2223 tapes wound on a former. In the cables, the tapes have different critical currents intrinsically. And they are electrically connected to each other and current leads. These make loss measurements considerably complex, especially for short samples of laboratory size. So special cautions are required in the positioning of voltage leads for measuring the true loss voltage. In this work we have prepared a conductor composed of three Bi-2223 tapes with different critical currents. The critical current and AC loss characteristics in the conductor have experimentally investigated. The results show that for uniform current distributions the conductor's critical current is proportional to the critical current of the Bi-2223 tape to which a voltage lead is attached. However it depends on the current non-uniformity parameter in the conductor rather than the tape's critical currents for nonuniform current distributions. The loss tests indicate that the AC loss is dependent on arrangements of voltage leads but not on their contact positions. The measured losses in the conductor also agree well with the sum of the transport losses measured in each Bi-2223 tape.

An Analytical Approach to Derive the Quality Loss Function with Multi-characteristics by Taguchi's Quality Loss Concept (다구찌 품질손실개념에 의한 다특성치 품질손실함수 도출의 분석적 접근방법)

  • Pai, Hoo Seok;Lim, Chae Kwan
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.4
    • /
    • pp.535-552
    • /
    • 2020
  • Purpose: The main theme of this study is to derive a specific quality loss function with multiple characteristics according to the same analytical structure as the single characteristic quality loss function of Taguchi. In other words, it presents an analytical framework for measuring quality costs that can be controlled in practice. Methods: This study followed the analytical methodology through geometric, linear algebraic, and statistical approaches Results: The function suggested by this study is as follows; $$L(x_1,x_2,{\cdots},x_t)={\sum\limits_{i=1}^{t}}k_i\{x_i+{\sum\limits_{j=1}^{t}}\({\rho}_{ij}{\frac{d_i}{d_j}}\)x_j\}x_i$$ Conclusion: This paper derived the quality loss function with multiple quality characteristics to expand the usefulness of the Taguchi quality loss function. The function derived in this paper would be more meaningful to estimate quality costs under the practical situation and general structure with multiple quality characteristics than the function by linear algebraic approach in response surface analysis.

One-step deep learning-based method for pixel-level detection of fine cracks in steel girder images

  • Li, Zhihang;Huang, Mengqi;Ji, Pengxuan;Zhu, Huamei;Zhang, Qianbing
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.153-166
    • /
    • 2022
  • Identifying fine cracks in steel bridge facilities is a challenging task of structural health monitoring (SHM). This study proposed an end-to-end crack image segmentation framework based on a one-step Convolutional Neural Network (CNN) for pixel-level object recognition with high accuracy. To particularly address the challenges arising from small object detection in complex background, efforts were made in loss function selection aiming at sample imbalance and module modification in order to improve the generalization ability on complicated images. Specifically, loss functions were compared among alternatives including the Binary Cross Entropy (BCE), Focal, Tversky and Dice loss, with the last three specialized for biased sample distribution. Structural modifications with dilated convolution, Spatial Pyramid Pooling (SPP) and Feature Pyramid Network (FPN) were also performed to form a new backbone termed CrackDet. Models of various loss functions and feature extraction modules were trained on crack images and tested on full-scale images collected on steel box girders. The CNN model incorporated the classic U-Net as its backbone, and Dice loss as its loss function achieved the highest mean Intersection-over-Union (mIoU) of 0.7571 on full-scale pictures. In contrast, the best performance on cropped crack images was achieved by integrating CrackDet with Dice loss at a mIoU of 0.7670.

An Auto-drawing Algorithm for the Single Line Diagram of Distribution Systems (배전선로 회선별단선도 자동생성 알고리즘)

  • Son, Ju-Hwan;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.854-859
    • /
    • 2010
  • Distribution Automation System(DAS) is designed to improve operational efficiency by acquisition and control of remote data using its components such as central computation units, communication network and feeder remote terminal units. A conventional human machine interface of the DAS adopts a schematic diagram which is made by drawing power equipments on the geographic information system map. The single line diagram is more useful than the schematic diagram for the main tasks of distribution system operation such as protective relay coordination, service restoration and loss minimization. Since the configuration of the distribution line is changed according to the relocation of the open tie switches, the auto-drawing algorithm based on the connection between the sections and the switches is an essential technique. This paper proposes a new auto-drawing algorithm for a single line diagram of distribution systems based on tertiary tree and collision avoidance method. The feasibility of the proposed algorithm has been testified for various cases using practical distribution system with 12 feeders.

Evaluation of Quality Levels with Multiple Probability Distributions Under the Taguchi's Feedback Control System (다구찌의 피드백 제어시스템 내 다수 함수 품질특성 고찰)

  • Song, Do-Hyun;Lee, Sang-Heon
    • Korean Management Science Review
    • /
    • v.24 no.1
    • /
    • pp.77-90
    • /
    • 2007
  • Taguchi assumed that a product characteristic has the uniform distribution in its preventive maintenance limit when deriving the expected loss generated by the quality deviation. But it is reasonable to assume that a product characteristic has the normal distribution than the uniform distribution. On this paper, we first find the optimum inspection interval and the optimum preventive maintenance limit under the truncated triangular distribution. Secondly we use the beta-general distribution and compare with the truncated triangular distribution. By using the numerical examples, we find the optimum inspection interval and the optimum preventive maintenance limit under their distributions. As a result, we find that the beta-general distribution gives the best solution and easy calculation.

Characteristics Study of DC Distribution System Interconnected with PV System (태양광 발전과 연계된 직류배전 시스템의 특성연구)

  • Seo, HU;Byen, BJ;Lee, YJ;Kim, DJ;Choe, GH
    • Proceedings of the KIPE Conference
    • /
    • 2011.11a
    • /
    • pp.201-202
    • /
    • 2011
  • Existing AC distribution system lower the efficiency of the commercial power, and also generate the conversion loss of renewable energy. In this study, DC distribution system interconnected with PV system is produced, and it is studied about characteristics of the system through the experiments which are uesd load of 3[kW].

  • PDF

The Development of Distribution Power Operating System using the Genetic Algorithm (유전자 알고리즘을 이용한 배전계통 운영시스템 개발)

  • Kim, Joon-Oh;Park, Chang-Ho;Lim, Sung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.480-482
    • /
    • 2000
  • The KEPCO is developing the practical power distribution operating system. The system adopt Genetic Algorithm and will be used loss reduction, load balancing, service planning for large capacity load and various kinds of simulations in the distribution power system. This paper presents the some obstacles and solutions on practical simulation system development, and some problems that need more study.

  • PDF

Distribution Network Reconfiguration Using Feeder Modeling (피더모델링을 이용한 배전계통 재구성)

  • Kim, Se-Ho;An, Jin-Oh;Lee, Soo-Mook
    • Proceedings of the KIEE Conference
    • /
    • 1998.07c
    • /
    • pp.1156-1158
    • /
    • 1998
  • This paper Presents two distribution-feeder models to simplify complicated distribution system calculations. These equivalent models are developed to simulate the total series voltage drop at the end of the given feeder and the total line loss of the given feeder accurately. In addition, the proposed models are bidirectional. This means that power infeed can be at either end and the model is accurate. Also, it is shown that the proposed models are suitable for network reconfiguration.

  • PDF

Regional Analysis of Load Loss in Power Distribution Lines Based on Smartgrid Big Data (스마트그리드 빅데이터 기반 지역별 배전선로 부하손실 분석)

  • Jae-Hun, Cho;Hae-Sung, Lee;Han-Min, Lim;Byung-Sung, Lee;Chae-Joo, Moon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.6
    • /
    • pp.1013-1024
    • /
    • 2022
  • In addition to the assessment measure of electric quality levels, load loss are also a factor in hindering the financial profits of electrical sales companies. Therefore, accurate analysis of load losses generated from distributed power networks is very important. The accurate calculation of load losses in the distribution line has been carried out for a long time in many research institutes as well as power utilities around the world. But it is increasingly difficult to calculate the exact amount of loss due to the increase in the congestion of distribution power network due to the linkage of distributed energy resources(DER). In this paper, we develop smart grid big data infrastructure in order to accurately analyze the load loss of the distribution power network due to the connection of DERs. Through the preprocess of data selected from the smart grid big data, we develop a load loss analysis model that eliminated 'veracity' which is one of the characteristics of smart grid big data. Our analysis results can be used for facility investment plans or network operation plans to maintain stable supply reliability and power quality.

A Study on Taguchi's Feed-back Control System (다구찌의 피드백 제어 시스템에 관한 연구)

  • 김지훈;정해성;김재주
    • Journal of Korean Society for Quality Management
    • /
    • v.26 no.3
    • /
    • pp.60-70
    • /
    • 1998
  • When driving the expected loss generated by the quality deviation, Taguchi(1991b) assumed that an objective characteristic has the uniform distribution in its control limit. But it is reasonable to assume that an objective characteristic has the normal distribution than the uniform distribution. Since the triangular distribution is similar to the normal distribution and easy to handle as well, in this article, we first find the optimum measurement interval and the optimum control limit under the triangular distribution. Under the normal assumption, the modified method is compared to Taguchi's. Secondly we find the numerical value solution of the optimum measurement interval and the optimum control limit under the normal distribution.

  • PDF