• Title/Summary/Keyword: Lorenz Cycle

Search Result 4, Processing Time 0.02 seconds

Obstacle Avoidance in the Chaos Mobile Robot

  • Bae, Young-Chul;Kim, Yi-Gon;Mathis Tinduk;Koo, Young-Duk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05a
    • /
    • pp.100-105
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. When a chaos robot meets an obstacle in a Lorenz equation or Hamilton equation trajectory, the obstacle reflects the robot. We also show computer simulation results for avoidance obstacle which fixed obstacles and hidden obstacles of Lorenz equation and Hamilton equation chaos trajectories with one or more Van der Pol obstacles

  • PDF

A Obstacle Avoidance in the Chaotic Robot for Ubiquitous Environment

  • Bae, Young-Chul
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.11a
    • /
    • pp.197-204
    • /
    • 2005
  • In this paper, we propose a method to an obstacle avoidance of chaotic robots that have unstable limit cycles in a chaos trajectory surface in the ubiquitous environment. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Chua's equation, Lorenz equation, Hamilton and Hyper-chaos equation trajectories with one or more Van der Pol as an obstacles. We proposed and verified the results of the method to make the embedding chaotic mobile robot to avoid with the chaotic trajectory in any plane.

  • PDF

Obstacle Avoidance Technique for Chaotic Mobile Robot (카오스 이동 로봇에서의 장애물 회피 기법)

  • Bae Young-chul;Kim Chun-suk
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.8
    • /
    • pp.1692-1699
    • /
    • 2004
  • In this paper, we propose a method to avoid obstacles that have unstable limit cycles in a chaos trajectory surface. We assume all obstacles in the chaos trajectory surface have a Van der Pol equation with an unstable limit cycle. We also show computer simulation results of Arnold equation, Chua's equation, Hyper-chaos equation, Hamilton equation and Lorenz chaos trajectories with one or more Van der Pol obstacles.

Computer Simulation of a Super-Heat Pump System (고효율 수퍼히트펌프에 관한 전산 해석)

  • Kim, H.J.;Jung, D.S.;Kim, C.B.;Ha, K.Y.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.2
    • /
    • pp.234-248
    • /
    • 1995
  • A super-heat pump system composed of a suction line heat exchanger, low and high stage economizers, and a screw compressor is simulated to examine the energy performance and design options. CFC12, HCFC22, HFC134a, HCFC22/HCFC142b, HFC32/HFC134a, and HFC125/HFC134a are used as working fluids for comparison. The results indicate that the proposed system charged with appropriate mixtures is up to 33.4% more energy efficient than the normal system with CFC12. The performance of the super-heat pump system charged with mixtures was influenced by such factors as the temperature matching, heat source temperature difference, low stage economizer, and high stage economizer. The fluids with a larger liquid specific heat such as HFC134a would have more benefits when a suction line heat exchanger is installed. 40%HCFC22/60%HCFC142b mixture seems to be a good candidate to replace CFC12. On the other hand, 25%HFC32/75% HFC134a would be a good long term candidate to replace HCFC22.

  • PDF