• Title/Summary/Keyword: Loran Signal

Search Result 34, Processing Time 0.024 seconds

Development of the Simulation Tool to Predict a Coverage of the R-Mode System (지상파 통합항법 서비스의 성능예측 시뮬레이션 툴 개발)

  • Son, Pyo-Woong;Han, Younghoon;Lee, Sangheon;Park, Sanghyun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.6
    • /
    • pp.429-436
    • /
    • 2019
  • The eLoran system is considered the best alternative because the vulnerability of satellite navigation systems cannot be resolved as perfect. Thus, South Korea is in the process of establishing a testbed of the eLoran system in the West Sea. To provide resilient navigation services to all waters, additional eLoran transmitters are required. However, it is difficult to establish eLoran transmitters because of various practical reasons. Instead, the positioning with NDGNSS/AIS source can expand the coverage and its algorithm with applying continuous waves is under development. Using the already operating NDGNSS reference station and the AIS base station, it is possible to operate the navigation system with higher accuracy than before. Thus, it is crucial to predict the performance when each system is integrated. In this paper, we have developed a simulation tool that can predict the performance of terrestrial integrated navigation system using the eLoran system, maritime NDGNSS station and the AIS station. The esitmated phase error of the received signal is calculated with the Cramer-Rao Lower Bound factoring the transmission power and the atmospheric noise according to the transmission frequency distributed by the ITU. Additionally, the simulation results are more accurate by estimating the annual mean atmospheric noise of the 300 kHz signal through the DGPS signal information collected from the maritime NDGNSS station. This approach can further increase the reliability of simulation results.

Implementation of Propagation delay estimation model of medium frequency for positioning (측위 적용을 위한 중파의 전파 지연 예측 모델 구현)

  • Yu, Dong-Hui
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.2
    • /
    • pp.111-118
    • /
    • 2009
  • Against Anomaly of GPS, there are several projects of independent satellite navigation systems like Galileo of Europe and QZSS of Japan and modernization of terrestrial navigation system like Loran. In domestic, the need of independent navigation system was proposed and DGPS signal was nominated as the possible substitute. The DGPS signal uses medium frequency, which travels through the surface and cause the additional delay rather than the speed of light according to Conductivities and elevations of the irregular terrain. The similar approach is Locan-C. Loran-C has been widely used as the maritime location system. Loran-C uses the ASF estimation method and provides more precise positioning. However there was rarely research on this area in Korea Therefore, we introduce the legacy guaranteed model of additional delay(ASF) and present the results of implementation. With the comparison of the original Monteath results and BALOR results respectively, we guarantee that the implementation is absolutely perfect. For further works, we're going to apply the ASF estimation model to Korean DGPS system with the Korean terrain data.

Short Distance ASF Measurement by using 9930M Loran Signal (9930M Loran신호 이용 근거리 ASF 측정)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Gu;Kim, Young-Jae;Lee, Sang-Jeong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2010.04a
    • /
    • pp.370-371
    • /
    • 2010
  • The Long Range Navigation (LORAN) had been mainly used world-wide until GPS (Global Positioning System) activation. In particular. it was essential junctionality for the ships to sail the oceans. However, according to the industry's developing, the current accuracy of Loran is insufficient for the utilization such as the harbour approach, the land navigation and the field of precise timing. Therefore it is necessary the study on the improvement of the positioning accuracy of Loran. The method of its improvement is to measure and compensate the propagation time delay, that is, additional secondary factor (ASF) between the transmitter and user's receiver. This study shows the technique for the absolute time delay measurement without a time of coincidence (TOC) table, and represents the ASF measurement result between Pohang transmitter station(9930M) and each measure points.

  • PDF

A Compensation Method of Timing Signals for Communications Networks Synchronization by using Loran Signals (Loran 신호 이용 통신망 동기를 위한 타이밍 신호 보상 방안)

  • Lee, Young-Kyu;Lee, Chang-Bok;Yang, Sung-Hoon;Lee, Jong-Gu;Kong, Hyun-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.11A
    • /
    • pp.882-890
    • /
    • 2009
  • In this paper, we describe a compensation method that can be used for the situation where Loran receivers lose their phase lock to the received Loran signals when Loran signals are employed for the synchronization of national infrastructures such as telecommunication networks, electric power distribution and so on. In losing the phase lock to the received signals in a Loran receiver, the inner oscillator of the receiver starts free-running and the performance of the timing synchronization signals which are locked to the oscillator's phase is very severly degraded, so the timing accuracy under 1 us for a Primary Reference Clock (PRC) required in the International Telecommunications Union (ITU) G.811 standard can not be satisfied in the situation. Therefore, in this paper, we propose a method which can compensate the phase jump by using a compensation algorithm when a Loran receiver loses its phase lock and the performance evaluation of the proposed algorithm is achieved by the Maximum Time Interval Error (MTIE) of the measured data. From the performance evaluation results, it is observed that the requirement under 1 us for a PRC can be easily achieved by using the proposed algorithm showing about 0.6 us with under 30 minutes mean interval of smoothing with 1 hour period when the loss of phase lock occurs.

Diurnal Effect Compensation Algorithm for a Backup and Substitute Navigation System of GPS (GPS 백업 및 대체 항법을 위한 지상파 신호의 일변효과 보상 방안)

  • Lee, Young-Kyu;Lee, Chang-Bok;Yang, Sung-Hoon;Lee, Jong-Koo;Kong, Hyun-Dong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1225-1232
    • /
    • 2008
  • In this paper, we describe a compensation method of diurnal effect which is one of the factors giving large effect on the performance when using ground-wave signals like Loran-C for a backup and substitute navigation system of global satellite navigation system such as GPS, and currently many researches of the topics are doing in USA and in Europe. In order to compensate diurnal effect, we find periodic frequency components by using the Least Square Spectral Analysis (LSSA) method at first and then compensate the effect by subtracting the estimated compensation signal, obtained by using the estimated amplitude and phase of the individual frequency component, from the original signal. In this paper, we propose a simple compensation algorithm and analysis the performance through simulations. From the results, it is observed that the amplitude and phase can be estimated with under 5 % and 0.17 % in a somewhat poor receiving situation with 0 dB Signal to Noise Ratio (SNR). Also, we analyze the obtainable performance improvement after compensation by using the measured Loran-C data. From the results, it is observed that we can get about 22 % performance improvement when a moving average with 5 minutes interval is employed.

Inland ASF Measurement by Signal of the 9930M Station (9930M국 로란-C 신호를 이용한 내륙 ASF 측정 연구)

  • Yang, Sung-Hoon;Lee, Chang-Bok;Lee, Jong-Koo;Kim, Young-Jae;Lee, Sang-Jeong
    • Journal of Navigation and Port Research
    • /
    • v.34 no.8
    • /
    • pp.603-607
    • /
    • 2010
  • The LORAN system had been used widely and it was an essential navigation aid for ships in the ocean until the GPS is adopted actively. In particular, it was essential functionality for the ships to sail the oceans. According to the advancement of industry, however, the current accuracy of traditional Loran is insufficient for the utilization of harbour approach, land navigation, and the field of survey and timing. Therefore it is necessary that the study on the improvement of the positioning accuracy of Loran. The one of the improving methods is to measure and compensate the propagation time delay between the transmitter and user's receiver, which is called as additional secondary factor (ASF). In this study, we measured the ASF between the Pohang master transmitting station (9930M) and four points where locate within 33 km apart from the transmitting station, using the measuring technique of the absolute time delay without a time of coincidence (TOC) table. As the result of measurement, the ranging error caused by the propagation delay was about 210 m at 33 km, however it can be reduced up to 40 m with ASF compensation.

Improvement of Loran-C Timing Accuracy by Inland Differential ASF Measurements (내륙 differential ASF 측정을 통한 Loran-C 시각 정확도 향상)

  • Lee, Chang-Bok;Hwang, Sang-Wook;Lee, Jong-Koo;Lee, Young-Kyu;Lee, Sang-Jeong;Yang, Sung-hoon
    • Journal of Navigation and Port Research
    • /
    • v.40 no.1
    • /
    • pp.15-20
    • /
    • 2016
  • In this study we measured a differential ASF to improve the accuracy of time synchronization with the signal transmitted from Pohang 9930M Loran station. We obtained the differential ASF which is calculated from a difference of the TOA measurements between KRISS and Chungnam National University(CNU), and KRISS and National Maritime PNT Office respectively. The TOA measurement at KRISS was measured by UTC(KRIS) reference clock and other sites were measured by atomic clocks respectively. The time variations of differential ASF measurements at CNU and National Maritime PNT Office were within $0.1{\mu}s$ and $0.05{\mu}s$ respectively. And we found the time variations of $0.1{\mu}s$ depending on the surrounding radio-wave environments from the differential ASF measurements of 60 minute moving averages. We can improve the accuracy of time synchronization of the local clock to within 10 ns by compensating the differential ASF through removing the common component of ASF. And we measured the absolute ASF between the Pohang transmit station and KRISS by the measurement technique of absolute time delay using a cesium atomic clock. The average ASF between two points is about $3.5{\mu}s$.

The Study for Position and Signal Power of Antenna on Construction of Korean P.N.T Service System (한국에 적합한 P.N.T 서비스 시스템 구축을 위한 안테나 위치 및 송신출력에 관한 연구)

  • Kim, Jeong-Rok;Gug, Seoung-Gi
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2012.06a
    • /
    • pp.80-81
    • /
    • 2012
  • Our society consist of many country's critical infrastructure such as production and distribution of electric power systems, communications technology, tele-communications, financial system, transportation systems when those systems are operated efficiently and normally. Country's critical infrastructure and its application fields of this magnitude rely on more and more P.N.T (Positioning, Navigation. Timing) systems, in which the tele-communications(Timing), financial market(Timing), logistics (Positioning, Navigation, Timing), transportation(Positioning, Navigation. Timing) is shoring. Reliability concerned about the exact position and timing of these critical national infrastructure rely on ability to provide a stable from GPS.

  • PDF

State of the Art on Terrestrial Radionavigation System and Its Applications for Maritime PNT Service

  • Seo, Kiyeol;Fang, Tae Hyun;Park, Sang Hyun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.229-238
    • /
    • 2022
  • This paper addresses on the International technical trends, standards, and development status of terrestrial radionavigation system to provide more accurate and fail-safe Positioning, Navigation, and Timing (PNT) Information available in maritime navigation environment. We analyze the performance result of pilot service in enhanced Long range navigation (eLoran) testbed environment using Low Frequency (LF) signal, and describe the development status of Ranging-Mode (R-Mode) system using Medium Frequency (MF) and Very High Frequency (VHF) to meet the Harbor Entrances and Approaches (HEA) requirement of International Maritime Organization (IMO) within 10m position accuracy. Furthermore, we present an architecture for integrated service of satellite-terrestrial navigation system and future maritime applicable fields. As the core information infrastructure of future navigation for 4th industrial revolution, this paper will be contributed to determining the direction of present and future to provide fail-safe PNT service with Global Navigation Satellite System (GNSS) based on the technical enhancement of terrestrial integrated navigation system.

Propagation delay due to irregular terrain of DGPS medium frequency signal (DGPS 중파 신호의 지형에 의한 전파 지연)

  • Yang, Seung-Chur;Yu, Dong-Hui
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.11a
    • /
    • pp.163-165
    • /
    • 2005
  • 최근 GPS의 이상 현상에 대한 대비 핀 독자 항법 시스템을 구축하기 위해 유럽의 갈릴레오 일본의 QZSS 등 세계 선진각국의 GPS에 독립적인 위성항법시스템을 구축하고 있으며 GPS의 백업 용도로 지상항법 시스템인 Loran의 현대화 작업 등이 진행되고 있다. 국내에서도 독자항법에 대한 필요성이 거론되었고 해양수산부는 해상 밀 국내 전 지역을 커버할 수 있는 신호 영역을 가진 DGPS 신호의 대체항법 및 시각동기 인프라로서의 활용성에 대해 정책적으로 접근하고 있다. GPS 보정 정보를 방송하는 DGPS 비콘 신호는 중파 대역으로 지표를 따라 전파되는 특성이 있다. 지표를 따라 전파되는 지표파는 지형의 전도율과 고도에 의해 전파의 전파시 추가 지연이 발생하고 이 추가 지연은 항법 린 시각동기에 오차를 유발하게 된다. 본 논문은 DGPS 신호가 지형의 특성에 따라 지연되는 전파 특성 및 전파지연모델을 소개하고 해당 전파지연모델 구현 결과를 기존 연구결과와 비교$\cdot$검증하여 그 결과를 제시한다.

  • PDF