• Title/Summary/Keyword: Loop design

Search Result 2,490, Processing Time 0.026 seconds

Closed-Loop Supply Chain Design of Power Battery using Blockchain

  • Chen, Jinhui;Jin, Chanyong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.680-682
    • /
    • 2022
  • The closed-loop supply chain's central enterprises aim to maximize the revenue and reduce the reclaiming channel level to the greatest extent by using blockchain and modern management methods. The traditional recycling network has more links, and there is less communication between enterprises in each link. There is a particular "bullwhip effect" in the channel link, making it difficult for power battery manufacturers to respond to the dynamic market quickly. It is often challenging to obtain scaled waste power batteries, which aggravates how power battery raw materials are expensive and difficult to recycle. Therefore, the closed-loop supply chain design of power batteries adopting blockchain shall minimize channel links and reduce transaction levels to reduce costs.

  • PDF

Stability Analysis and Improvement of the Capacitor Current Active Damping of the LCL Filters in Grid-Connected Applications

  • Xu, Jinming;Xie, Shaojun;Zhang, Binfeng
    • Journal of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.1565-1577
    • /
    • 2016
  • For grid-connected LCL-filtered inverters, dual-loop current control with an inner-loop active damping (AD) based on capacitor current feedback is generally used for the sake of current quality. However, existing studies on capacitor current feedback AD with a control delay do not reveal the mathematical relation among the dual-loop stability, capacitor current feedback factor, delay time and LCL parameters. The robustness was not investigated through mathematical derivations. Thus, this paper aims to provide a systematic study of dual-loop current control in a digitally-controlled inverter. At first, the stable region of the inner-loop AD is derived. Then, the dual-loop stability and robustness are analyzed by mathematical derivations when the inner-loop AD is stable and unstable. Robust design principles for the inner-loop AD feedback factor and the outer-loop current controller are derived. Most importantly, ensuring the stability of the inner-loop AD is critical for achieving high robustness against a large grid impedance. Then, several improved approaches are proposed and synthesized. The limitations and benefits of all of the approaches are identified to help engineers apply capacitor current feedback AD in practice.

Development of a Compact Nuclear Hydrogen Coupled Components Test Loop (원자로수소생산을 위한 연결부품 실험용 소형 컴팩트 실험장치 개발)

  • Hong, S.D.;Kim, J.H.;Kim, C.S.;Kim, Y.W.;Lee, W.J.
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2850-2855
    • /
    • 2008
  • Very High Temperature Reactor (VHTR) has been selected as a high energy heat source for a nuclear hydrogen generation. The VHTR heat is transferred to a thermo-chemical hydrogen production process through an intermediate loop. Both Process Heat Exchanger and sulfuric acid evaporator provide the coupled components between the VHTR intermediate loop and hydrogen production module. A small scaled Compact Nuclear Hydrogen Coupled Components test loop is developed to simulate the VHTR intermediate loop and hydrogen production module. Main objective of the loop is to screening the candidates of NHDD (Nuclear Hydrogen Development and Demonstration) coupled components. The operating condition of the gas loop is a temperature up to $950^{\circ}C$ and a pressure up to 6.0MPa. The thermal and fluid dynamic design of the loop is dependent on the structures that enclose the gas flow, especially primary side that has fast gas velocity. We designed and constructed a small scale sulfuric acid experimental system which can simulate a part of the hydrogen production module also.

  • PDF

Design of Single Loop Output Voltage Controller for 3 Phase PWM Inverterl (3상 PWM 인버터의 단일루프 전압제어기 설계)

  • 곽철훈;최규하
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.6
    • /
    • pp.561-568
    • /
    • 2003
  • There arc two ways in the output voltage control method in PWM inverters. One Is double loop voltage control composed of inner current control loop and outer voltage control loop.'rho other is single loop voltage control method composed of voltage control loop only. It's characteristics shows lower performance in case of high output impedance than double loop voltage control. However, in case of low output impedance, it shows good control performance in all load ranges than double loop voltage control. In this paper, the rule and the gain of single loop voltage control have been developed analytically and these were verified through computer simulation and experiment.

Dynamic Analysis and Control Design of a Step-Down Switched-Capapcitor Dc-Dc Converter (강압형 스위치드-커패시터 DC-DC 컨버터의 동특성해석 및 제어회로 설계)

  • 최병조
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.485-488
    • /
    • 2000
  • In this paper dynamic analyses and control design of a step-down switched-capacitor dc-dc converter are presented. Open-loop dynamics of the converter are analyzed using the stage-space averaging technique. A systmatic control design method that offers excellent closed-loop performance for the converter is proposed, The analysis results and dynamic performance of the converter are verified using 18 W experimental converter that delivers a 5V/3.5V output from a 11-16V input source.

  • PDF

Optimization of Diesel Engine Performance with Dual Loop EGR considering Boost Pressure, Back Pressure, Start of Injection and Injection Mass (과급압력, 배압, 분사 시기 및 분사량에 따른 복합 방식 배기 재순환 시스템 적용 디젤 엔진의 최적화에 대한 연구)

  • Park, Jung-Soo;Lee, Kyo-Seung;Song, Soon-Ho;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.136-144
    • /
    • 2010
  • Exhaust gas recirculation (EGR) is an emission control technology allowing significant NOx emission reduction from light-and heavy duty diesel engines. The future EGR type, dual loop EGR, combining features of high pressure loop EGR and low pressure loop EGR, was developed and optimized by using a commercial engine simulation program, GT-POWER. Some variables were selected to control dual loop EGR system such as VGT (Variable Geometry Turbocharger)performance, especially turbo speed, flap valve opening diameter at the exhaust tail pipe, and EGR valve opening diameter. Applying the dual loop EGR system in the light-duty diesel engine might cause some problems, such as decrease of engine performance and increase of brake specific fuel consumption (BSFC). So proper EGR rate (or mass flow) control would be needed because there are trade-offs of two types of the EGR (HPL and LPL) features. In this study, a diesel engine under dual loop EGR system was optimized by using design of experiment (DoE). Some dominant variables were determined which had effects on torque, BSFC, NOx, and EGR rate. As a result, optimization was performed to compensate the torque and BSFC by controlling start of injection (SOI), injection mass and EGR valves, etc.

Wideband Square Loop Antenna with Circular Sectors for Digital TV (원형 섹터가 추가된 DTV용 광대역 정사각형 루프 안테나)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.10
    • /
    • pp.1845-1851
    • /
    • 2016
  • In this paper, a design method for a wideband square loop antenna for Digital TV applications is studied. The proposed loop antenna is a square loop antenna combined with circular sectors to connect with central feed points. The square loop is used instead of the circular loop in order to miniaturize the antenna size. The input reflection coefficient and gain characteristics of the proposed antenna are analyzed to match with the 75 ohm port impedance for DTV applications. The effects of the gap between the circular sectors and the length of the square loop on the input reflection coefficient and gain characteristics are examined to obtain the optimal design parameters. The optimized antenna is fabricated on an FR4 substrate, and the experiment results show that it operates in the frequency band of 470-1,300 MHz for a VSWR < 2, which assures the operation in the DTV band.

Transonic buffet alleviation on 3D wings: wind tunnel tests and closed-loop control investigations

  • Lepage, Arnaud;Dandois, Julien;Geeraert, Arnaud;Molton, Pascal;Ternoy, Frederic;Dor, Jean Bernard;Coustols, Eric
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.145-167
    • /
    • 2017
  • The presented paper gives an overview of several projects addressing the experimental characterization and control of the buffet phenomenon on 3D turbulent wings in transonic flow conditions. This aerodynamic instability induces strong wall pressure fluctuations and therefore limits flight domain. Consequently, to enlarge the latter but also to provide more flexibility during the design phase, it is interesting to try to delay the buffet onset. This paper summarizes the main investigations leading to the achievement of open and closed-loop buffet control and its experimental demonstration. Several wind tunnel tests campaigns, performed on a 3D half wing/fuselage body, enabled to characterize the buffet aerodynamic instability and to study the efficiency of innovative fluidic control devices designed and manufactured by ONERA. The analysis of the open-loop databases demonstrated the effects on the usual buffet characteristics, especially on the shock location and the separation areas on the wing suction side. Using these results, a closed-loop control methodology based on a quasi-steady approach was defined and several architectures were tested for various parameters such as the input signal, the objective function, the tuning of the feedback gain. All closed-loop methods were implemented on a dSPACE device able to estimate in real time the fluidic actuators command calculated mainly from the unsteady pressure sensors data. The efficiency of delaying the buffet onset or limiting its effects was demonstrated using the quasi-steady closed-loop approach and tested in both research and industrial wind tunnel environments.

Design of Triple Loop Current Control for Auxiliary Power Unit of Fuel Cell Train having Grid Connected Inverter Function (계통 연계 기능을 갖는 연료전지 철도차량 보조전원장치의 삼중 루프 전류 제어기 설계)

  • Kwon, Il-Seob;Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yual
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • This study proposes a triple-loop current control method for the auxiliary power unit of fuel cell trains. The auxiliary power unit of fuel cell trains has a grid-connected function when power is supplied to the utility grid. Moreover, the auxiliary power unit of trains has a 1500 V DC link voltage; thus, PWM frequency cannot be increased to a high frequency. Owing to this low PWM frequency condition, creating a triple-loop design is difficult. In this study, a triple-loop controller is developed for a capacitor voltage controller in standalone mode that operates as an auxiliary power supply for trains and for a grid current controller in grid control mode with an inner capacitor voltage controller. The voltage controller employs an inductor current controller inner loop. To overcome low PWM frequency, a design method for the bandwidth of the capacitor voltage controller considering the bandwidth of the inner inductor current controller is described. The effectiveness of the proposed method is proven using PSIM simulation.