• Title/Summary/Keyword: Loop Impedance

Search Result 168, Processing Time 0.027 seconds

Analysis for Autotransformer-Fed AC Electric Railroad System Using Constant Current Mode (정전류 철도 부하를 이용한 교류 전기 철도 급전 시스템 해석)

  • 이승혁;정현수;김진오
    • Proceedings of the KSR Conference
    • /
    • 2001.10a
    • /
    • pp.329-334
    • /
    • 2001
  • This paper presents exact autotransformer-fed AC electric railroad system modeling using constant current mode. The theory is based on the solution of algebraic. The proposed modeling is considered the line self-impedances and mutual-impedances. Besides, the load modeling improved results are obtained as application to the proposed constant current mode. In the analysis on AT-fed AC electric railroad system circuit, a generalized analysis method using the loop equation on a case by case. the simulation objectives are to calculate the catenary and rail voltages with respect to ground, as the train moves along a section of line between two adjacent ATs. The model contains assumptions regarding the representation of the autotransformer, the impedance of the track/catenary system, and the grounding arrangements, which all effect the accuracy of the result. The modeling results seem very reasonable. It is established that techniques for the AC electric railroad system modeling and analysis.

  • PDF

A Study on Distance Relay characteristics for Transmission Line with the Unified Power Flow Controller (송전선로에 UPFC연계시 거리계전기 동작특성에 관한 연구)

  • Suh, Jung-Nam;Jung, Chang-Ho;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.220-222
    • /
    • 2001
  • This paper represents impedance calculation of the distance relay using PSCAD/EMTDC software for transmission line involving the UPFC (Unified Power Flow Controller) device, which is the most vigorous component of FACTS. The presence of the UPFC significantly affects the line parameters of transmission system, which are also influenced by the distance relay setting. Moreover depending on the UPFC location and its parameters, zones of setting the distance relay will be changed. The presence of the UPFC in the fault loop affects both voltage and current seen by relay. Therefore, the distance relay should be taken into account the variable injected voltage of the UPFC.

  • PDF

Analysis of Magnetically Coupled Wireless Power Transmission for Maximum Efficiency

  • Kim, Chung-Ju;Lee, Bom-Son
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.156-160
    • /
    • 2011
  • We have proposed and analyzed an equivalent circuit for a magnetically coupled wireless power transmission (WPT) system between two loop resonators by considering its coupling coefficient and radiation-related parameters. A complete formulation is provided for all the necessary circuit parameters. The mechanism of radiation loss is sufficiently explained. The circuit and electromagnetic (EM) simulation results have been shown to be in good agreement. Based on the proposed circuit formulation, a specific load impedance for maximum WPT efficiency was found to exist. The proposed modeling of the WPT in terms of circuit characterizations provides sufficient insight into the problems associated with WPT.

Determining Method of Minimum-capacitance for Self-excited Induction Generator (자기 여자 유도 발전기의 최소 커패시턴스의 결정법)

  • Jin, Chung-Min;Jwa, Chong-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.729-731
    • /
    • 2000
  • This paper presents a simple method for determining the minimum value of capacitance required for initiating self excitation in three-phase self-excited induction generator. Based on the steady-state equivalent circuit model, this paper presents simple and direct method to find the minimum capacitance requirement under R-L load. Using the loop impedance and nodal admittance. the minimum capacitance is determined by self excitation condition. These computed values can be used to predict practically the minimum value of the terminal voltage required for self-excitation. To maintain a constant terminal voltage, a method for determining the frequency, terminal capacitance, and exciting reactance is also described.

  • PDF

Dry Etching of patternedLiNbO3Waveguides for the High-speed Optical Modulator fabrication (초고속 광변조기 제작을 위한 LiNbO3도파로의 건식식각)

  • 양우석;김우경;이승태;박우정;장현수;윤대호;이한영
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.8
    • /
    • pp.731-735
    • /
    • 2003
  • Ti-indiffused LiNbO$_3$waveguide have been used to various high speed optical device based on electro-optic effect such as modulators, switches, and sensor, etc. In order to high speed modulation of optical modulator have, one of the further devices, needed to increasing of electrode surrounding air by LiNbO$_3$dry etching because of impedance matching for optical and RF phase velocity between waveguide and electrode. We studied property of LiNbO$_3$dry etching after waveguide patterning lot optical modulation by using neutral loop discharge (NLD) plasma.

Study on conversion efficiency of RF-DC converter with series diode (직렬 연결 RF-DC 변환기의 변환효율에 관한 연구)

  • Choi, Ki-Ju;Hwang, Hee Yong
    • Journal of Industrial Technology
    • /
    • v.30 no.A
    • /
    • pp.69-73
    • /
    • 2010
  • In this paper, we designed the RF-DC converter used in wireless power transmission system and studied how to design the RF-DC converter of high conversion efficiency. The RF-DC converter operate at 2.45GHz and the diode is connected with series. The RF-DC converter uses shorted stub for DC loop and matching. We can divide the RF-DC converter circuit into four blocks. The reflection coefficients between the blocks were optimized for the maximum conversion efficiency at 0 dBm input power and $1300{\Omega}$ load impedance. The final design of the RF-DC converter has a 52 percent conversion efficiency.

  • PDF

The study of a chopper-type transistorized d.c. amplifier circuit (교류변환형 트란지스터식 직류증폭회로에 관한 연구)

  • 한만춘;최창준
    • 전기의세계
    • /
    • v.18 no.5
    • /
    • pp.12-19
    • /
    • 1969
  • The sensitivity of transistorized d.c. amplifiers is mainly limited by drift at operating point caused by ambient temperature changes. A chopper-type transistorized amplifier is necessary to obtain a high sensitivity without recourse to drift compensation which requires the adjustment of several balancing controls. A chopper-stabilized system consisting of an electro-mechanical chopper for input and output and a high-gain a.c. amplifier is designed and analyzed. The gain of the a.c. amplifier, expressed as the ratio of voltages, is larger than 80db in the band of 50C/S - 100KC/S. The complete system gives an open-loop gain of 68db at direct current. The offset voltage is 20.mu.V referred in input and the voltage drift at the input is less than 10.mu.V/hr at 25.deg.C. This type of amplifier would be useful for the high-gain transistorized d.c. amplifier for analog computers. Also, due to the high input impedance, it is suitable for amplification of signals from wide range of source impedances.

  • PDF

Graphene Reconfigurable Antenna for GPS and Iridium Applications

  • Salem GAHGOUH;Ali GHARSALLAH
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.3
    • /
    • pp.203-207
    • /
    • 2023
  • A frequency reconfigurable antenna based on graphene and used for multi-band wireless communications is presented in this article. The proposed antenna, which consists of two radiating rectangular loops with a graphene extension, is analyzed for Global Positioning System (GPS) and Iridium applications. Its operating frequency is tuned through the implementation of a layer of graphene and thereby adjusting the applied gate bias. Furthermore, the results show a novel use of graphene for microwave frequencies while achieving a frequency reconfiguration with an improvement of the impedance matching and the gain. The results also prove the importance of graphene, with its exceptional properties, for a promising future in nano-electronics.

Design of a Internal Loop Antenna for Multi-band Mobile Handset Applications (다중 대역 이동 통신 단말기용 내장형 루프 안테나 설계)

  • Lee Young-Joong;Lee Jin-Sung;Jung Byungwoon;Park Myun-Joo;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.9 s.100
    • /
    • pp.917-925
    • /
    • 2005
  • In this paper, the quad-band antenna for mobile handsets is proposed and developed. The operating frequency bands include GSM(880 MHz${\~}$960 MHz), GPS(1,575 MHz$\pm$10 MHz), DCS(1,710 MHz${\~}$l,880MHz), and PCS(1,850 MHz${\~}$l,990 MHz). The proposed antenna consists of a feed line, a shorting post, and a radiating element of the feed loop. The multi-band operation is achieved by using the fundamental and higher resonant modes of the radiating element. Based on analysis of the current distribution on the radiator, the resonant frequency of each mode can be adjusted by adding the different sizes of slots on the radiator. The radiator of the feed loop is designed to be symmetrical so that the energy is symmetrically distributed on the radiator, which results in omni-directional radiation pattern. The ground plane under the radiator is removed in order to improve the bandwidth. The measured impedance bandwidths are $10.1\%$ in GSM band(VSWR<2.5), $26.8\%$ in GPS band, and DCS/US-PCS bands(VSWR<2.5), respectively. The maximum gains on the H-plane of the fabricated antenna are measured about -0.37 dBi${\~}$2.55 dBi for all operating frequency bands.

Design and SAR Analysis of Broadband Monopole Antenna Using Loop and T-Shaped Patches (사각 루프와 T자형 패치를 결합한 광대역 평면형 모노폴 안테나 설계 및 SAR 분석)

  • Jang, Ju-Dong;Lee, Seungwoo;Kim, Nam;Choi, Dong-Geun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • In this paper, a broadband planar monopole antenna for multi-band services is proposed. The physical size of the proposed antenna is miniaturized by folding a rectangular loop. And a resonance point in the 3.9 GHz band is reduced by a coupling phenomenon with the central part of the T-shaped patch and the folded rectangular loop. In addition, the T-shaped patch is inserted to the rectangular shaped monopole antenna due to deriving the broadband frequency characteristics. The frequency characteristic is optimized by adjusting the gap and length of the folded rectangular loops and a transverse diameter of the T-shaped patch. The antenna dimensions including the ground plane are $40{\times}60{\times}1.6mm^3$. It is fabricated on the FR-4 substrate(${\epsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. In the measured result, the bandwidth corresponding to the VSWR of 2:1 is 162 MHz(815~977 MHz) and 2,530 MHz(1.43~3.96 GHz). For analyzing the human effect by the proposed antenna, 1 g and 10 g averaged SARs are simulated and measured. As the simulated results, 1 g-averaged SAR is 1.044 W/kg, and 10 g-averaged SAR is 0.718 W/kg. This result are satisfied by the SAR guidelines which are 1.6 W/kg(1 g-averaged) and 2.0 W/kg(10 g-averaged).