• 제목/요약/키워드: Loop Heat Pipe(LHP)

검색결과 17건 처리시간 0.024초

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • 최지훈;성병호;유정현;서민환;김철주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

다공성소결윅구조에 따른 루프 히트파이프에서 압력손실의 이론적 분석 (Theoretical Analysis of the Pressure Drop in Loop Heat Pipe by Sintered Porous Wick Structure)

  • 이기우;이욱현;박기호;이계중;전원표;인현만
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1225-1230
    • /
    • 2004
  • In this paper, the pressure drops were investigated according to the sintered porous wick structure in loop heat pipe(LHP) by theoretical analysis. LHP has the wick only in evaporator for the circulation of working fluid, so utilizes porous wick structure which pore diameter is very small for large capillary force. This paper investigates the effects of different parameters on the pressure drops of the LHP such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity. Working fluid is water and the material of sintered porous wick is copper. According to the these different parameters, capillary pressure, pressure drop in wick were analized by theoretical design method of LHP.

  • PDF

Tabu Search를 이용한 Loop Heat Pipe의 최적설계에 관한 연구 (Design Optimization for Loop Heat Pipe Using Tabu Search)

  • 박용진;윤수환;구요천;이동호
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.737-743
    • /
    • 2009
  • 본 연구는 Tabu Search를 이용하여 LHP의 최적설계를 진행하는 방법과 절차 및 결과를 제시하고자 한다. 최적설계의 목적은 항공기에 탑재된 리튬이온 전지의 작동온도 조건을 만족하면서 LHP의 중량을 최소화시키는 것이다. 전지는 고에너지 밀도의 특성으로 항공기에 장착된 고에너지 레이저의 동력원으로 사용되는 것으로 가정되었다. 해석은 Steady state analysis model에 기초하였으며 메타모델로 근사화하였다. 최적화 결과로 Tabu Search는 유전알고리듬 등 다른 비 구배기반 최적화 방법에 비해 비교적 적은 계산 시간을 소요하면서도 전역해를 보장하였으나 난수에 의해 초기해를 바꾸어 가면서 최적화를 여러 번 시도해야 하는 단점이 있었다. 그리고 최적화 과정을 통해 기 발표된 LHP와 동일한 성능을 가지면서도 경량화된 LHP를 얻을 수 있었다.

황동소결윅-물 LHP의 작동 특성에 관한 연구 (Study on a Operating Characteristics of Loop Heat Pipe Using a Brass Sintered Metal Wick-Water)

  • 이욱현;이기우;박기호;이계중;노승용
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1528-1533
    • /
    • 2004
  • In this study, we have manufactured the LHP(Loop Heat Pipe) with sintered metal wick and investigated the working characteristics of LHP experimentally.Water was used as a working fluid and fill charge rate was changed. LHP basically consist of the separated vapor/liquid channels, evaporator having sintered metal wick(effective pore diameter :$16{\sim}19{\mu}m$), and condenser cooled by water. The diameter of vapor/liquid line tube are 3.2mm/6.35mm, respectively. Heat transfer rate and thermal resistance was represented to study the basic characteristics of LHP at each conditions

  • PDF

소결금속 윅과 메탄올을 사용하며 바이패스라인이 부착된 루프히트파이프의 작동 특성 (Operating Characteristics of a Sintered-Metal Wick/Methanol Loop Heat Pipe Having a Bypass Line)

  • 부준홍;정의국
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2130-2135
    • /
    • 2007
  • Operating characteristics of a loop heat pipe (LHP) having a bypass line was investigated experimentally. The LHP had a sintered metal wick as a capillary structure and methanol as a working fluid. The sintered metal wick was made of stainless steel of which the average pore size was 5 ${\mu}m$and porosity of 47%. A bypass line of a small diameter was attached between the vapor escape passage and the liquid reservoir. The dimension of the flat evaporator was $50(L){\times}40(W){\times}30(H)$ mm and that of the condenser was $50(L){\times}40(W){\times}11(H)$ mm. Wall and pipe material of the LHP was stainless steel and heating area was 35(W) mm${\times}$35(L) mm. The inner diameters of vapor and liquid transport lines were 4.0 mm and 2.0 mm, and the lengths of the two lines were both 0.5 m. The LHP was tested for three different tilt angles of horizontal, favorite tilt, and adverse tilt. The thermal load range was up to 290 W at the condenser above evaporation position. Furthermore, the effect of a bypass line on the start-up transient as well as steady-state operation was presented and discussed.

  • PDF

A Study on Selecting Criteria of Working Fluid in Loop Heat Pipes with a Circular Plate Type Evaporator

  • Nguyen, Xuanhung;Sung, Byung-Ho;Choi, Jee-Hoon;Jo, Jung-Rae;Yim, Kwang-Bin;Kim, Chul-Ju
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.309-314
    • /
    • 2008
  • increased heat dissipation and higher heat density of electronic equipment and/or parts released. A loop heat pipe(LHP) has been payed closer attention to the potential candidate of an electronic cooling. As of the LHP with a circular plate type evaporator developed, this study focused on its operating characteristics on the steady state in accordance with charging different working fluid. The relationship between working fluid and operating characteristics is discussed.

  • PDF

Safety Design of the Loop Heat Pipe (LHP) by the Hazard Analysis

  • Tanaka, Kiyoshi
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.54-57
    • /
    • 2010
  • The LHP uses the capillary head instead of the mechanical pump to transfer the fluid. It does not have any moving parts and transfer the fluid by the capillary head between the vapor and liquid interface of the wick like a heat pipe (HP). Moreover, vapor and liquid flows in the same direction. It can reduce the loss of the pressure in the wick (very short wick in the evaporator) and can transfer large heat over long distance compared with HP. It is necessary that we do the hazard analysis that is a part of the safety design, for the benefit of eliminating and inhibit the hazard. In this paper, we describe the hazard analysis of LHP.

마이크로 세라믹 윅을 사용한 루프 히트파이프의 특성 연구 (Characteristic Studies on Loop Heat Pipe with Micro Ceramic Wick)

  • 박종찬;이충구;이석호
    • 대한기계학회논문집B
    • /
    • 제31권10호
    • /
    • pp.823-831
    • /
    • 2007
  • This paper presents the experimental and simulation study of a loop heat pipe (LHP) that can be applied to present electronics, space missions and thermal control systems. The present experimental study was carried out employing sintered alumina ceramic wick ($d=2.96\;{\mu}m$, ${\phi}=0.61$). High purity R-134a, R-22 and water were also used as alternative working fluids in addition to ammonia. The experimental study showed that the maximum heat transfer performance for the test LHP in the vertical top heating mode was over 100 Watts when ammonia was used as the working fluid. The simulation results have been compared with the experimental results to validate a simulation model based on the thermal resistance network that was developed to evaluate the performance of LHPs, focusing on their prospective applications in electronics. The simulation model is based on the loop overall energy, mass, and momentum balance. The simulation program can predict the effects of various parameters which affect the performance of LHP within 5% compared with the experimental results.

평판형 증발부를 갖는 루프히트파이프에 대해 박막이론을 적용한 해석적 모델링 (Analytical Modeling of a Loop Heat Pipe with a Flat Evaporator by Applying Thin-Film Theory)

  • 정의국;부준홍
    • 대한기계학회논문집B
    • /
    • 제34권12호
    • /
    • pp.1079-1085
    • /
    • 2010
  • 평판형 증발부를 갖는 루프히트파이프(LHP)에 대한 정상상태 해석모델을 제시하였다. 관련문헌의 고찰에 기초하여 LHP 의 주요 부분인 증발부, 액체저장조(보상챔버), 증기이송관, 액체이송관 및 응축부에서 온도와 압력을 예측할 수 있도록 계산과정을 제시하였으며, LHP 에서 유일하게 모세관 구조물을 가지는 증발부의 해석에 중점을 두었다. 증발부에서 액체 -기체 경계면 부근에서 압력과 온도의 영향을 고려하기 위해 박막이론을 사용하였으며, 수정된 기체분자운동이론에서 응축경계면 온도를 산정하는데 있어서 독특한 방법을 도입하였다. 응축부에서는 상변화 경계면을 단순화하여 처리함으로써 응축부 형상 변화에 상대적인 융통성을 구비하도록 하였다. 본 연구의 LHP 정상상태 해석 모델은 문헌 상의 실험결과에 의해 타당성이 증명되었다. 해석모델에 의한 예측치는 실험치와 비교할 때 절대온도를 기준으로 최대 상대오차 3% 이내로서 합리적으로 잘 일치하였다.

루프 히트파이프의 작동에 영향을 미치는 인자에 대한 이론적 분석 (A Theoretical Analysis on the Factors Affecting the Operation of Loop Heat Pipe)

  • 이기우;전원표;이욱현;박기호
    • 설비공학논문집
    • /
    • 제16권12호
    • /
    • pp.1107-1116
    • /
    • 2004
  • In this paper, the effects of diverse parameters on the operation of loop heat pipe (LHP), such as particle diameter of sintered porous wick, wick porosity, vapor line diameter, thickness of wick and heating capacity were investigated by a theoretical analysis. A LHP has a wick only in its evaporator for the circulation of working fluid, and utilizes a porous wick structure of which pore size is very small to obtain a large capillary force. The working fluid is water and the material of sintered porous wick is copper. For these different parameters, capillary pressure, pressure drop in wick, pressure drops and temperature distribution were analyzed by a theoretical design method of LHP.