• Title/Summary/Keyword: Longitudinal tension

Search Result 149, Processing Time 0.025 seconds

A Case of Atypical Distribution of Pulmonary Tuberculosis in Bedridden Patient with Quadriplegia (사지마비로 장기 침상안정 환자에서 폐결핵 발생부위 변화 1예)

  • Hwang, Hun-Gyu;Jung, Eun-Jung;Lim, Gune-Il;Yang, Seung-Boo;Im, Han-Hyeok
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.1
    • /
    • pp.52-55
    • /
    • 2010
  • Pulmonary tuberculosis has intermediate prevalence in Korea. It is known that tuberculosis infection predominantly involves the upper lobes, based on the fact that multiplication of Mycobacterium tuberculosis is favored in areas with decreased pulmonary blood flow, impaired lymphatic drainage, and high oxygen tension. We report this case of a 40-year-old man who was brought to our hospital with hemoptysis and dyspnea. Prior to admission, the patient had been in a bedridden state for 15 years due to an injury of the cervical spine 4~5. A 3-Dimensional computed tomography showed predominantly longitudinal distribution of centrilobular nodules along the anterior chest wall, in the left lung. MTB-PCR and AFB culture of bronchial washing fluid revealed pulmonary tuberculosis. This case shows that long-standing supine posture and decreased motion of the anterior chest wall may change the distribution of preferential infection site of Mycobacterium tuberculosis in the lung, resulting in a ventral predominance of tuberculosis infection in the quadriplegic patient.

Study on Ultrasonic Birefringence by Uniaxial Stress in Axisymmetric Solids (축대칭 고체내부의 단축 응력에 의한 초음파 복굴절 특성 연구)

  • Kim, Noh-Yu;Chang, Young-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.5
    • /
    • pp.336-342
    • /
    • 2006
  • Uniaxial stress in ail axisymmetric body is the simplest example of ultrasonic stress measurement. However, the birefringence theory cannot be applied for axisymmetric solids because the axisymmetric stress field in the body does not make shy velocity difference in SH waves propagating in the axisymmetric direction. Conventional ultrasonic technique using the time-of-flight method also needs ultrasonic lengths of the unstressed and stressed body, which is very impractical. In this paper, the birefringence effect in axisymmetric solids under uniaxial stress is formulated to evaluate the axial stress inside the solid without measuring tile ultrasonic length. Theoretical derivation for the birefringence characteristics in the axisymmetric solids is made using the longitudinal and shear waves instead of two horizontally polarized shear waves. Tension test is conducted for carbon-steel specimen to measure the birefringence coefficient and investigate the validity of the theory. It is observed from experimental results that the velocity difference in two differently polarized acoustic waves is proportional to the uniaxial stress in the axisymmetric solid with a good agreement with the theoretical value.

Space grid analysis method in modelling shear lag of cable-stayed bridge with corrugated steel webs

  • Ma, Ye;Ni, Ying-Sheng;Xu, Dong;Li, Jin-Kai
    • Steel and Composite Structures
    • /
    • v.24 no.5
    • /
    • pp.549-559
    • /
    • 2017
  • As few multi-tower single-box multi-cell cable-stayed bridges with corrugated steel webs have been built, analysis is mostly achieved by combining single-girder model, beam grillage model and solid model in support of the design. However, such analysis methods usually suffer from major limitations in terms of the engineering applications: single-girder model fails to account for spatial effect such as shear lag effect of the box girder and the relevant effective girder width and eccentric load coefficient; owing to the approximation in the principle equivalence, the plane grillage model cannot accurately capture shear stress distribution and local stress state in both top and bottom flange of composite box girder; and solid model is difficult to be practically combined with the overall calculation. The usual effective width method fails to provide a uniform and accurate "effective length" (and the codes fail to provide a unified design approach at those circumstance) considering different shear lag effects resulting from dead load, prestress and cable tension in the construction. Therefore, a novel spatial grid model has been developed to account for shear lag effect. The theoretical principle of the proposed spatial grid model has been elaborated along with the relevant illustrations of modeling parameters of composite box girder with corrugated steel webs. Then typical transverse and longitudinal shear lag coefficient distribution pattern at the side-span and mid-span key cross sections have been analyzed and summarized to provide reference for similar bridges. The effectiveness and accuracy of spatial grid analysis methods has been finally validated through a practical cable-stayed bridge.

Evaluation of Ductility Capacity of Reinforced Concrete Bridge Columns Subject to Cyclic Loading Using Flexibility-Based Fiber Element Method (유연도법 섬유요소모델에 의한 반복하중을 받는 철근콘크리트 교각의 연성능력 평가)

  • 고현무;조근희;조호현
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.3
    • /
    • pp.11-21
    • /
    • 2002
  • The evaluation of displacement ductility is performed by direct method through tracking the inelastic hysteretic behavior of RC bridge columns subject to cyclic loading using a flexibility-based fiber element mode. To reasonably track the inelastic behavior until the RC bridge column reaches its ultimate state, the average stress-average strain relations and joint elements, which agree well with experiments, are modified and applied considering the tension stiffening behavior and discontinuous displacement between the column and its base. In addition the evaluation of displacement ductility is performed by a direct method easily applicable to numerical analysis. Locations for the integration points, values for the post-crushing concrete strength and low-cycle fatigue failure of longitudinal reinforcement that affect the calculation of yielding and ultimate displacements are proposed for the application to flexibility-based fiber element model. Since less than 10% of error occurs during the displacement ductility analysis, the yielding and ultimate displacements evaluated by the applied analysis method and model appear to be valid.

Prognosis of Full-Thickness Skin Defects in Premature Infants

  • Moon, Hyung Suk;Burm, Jin Sik;Yang, Won Yong;Kang, Sang Yoon
    • Archives of Plastic Surgery
    • /
    • v.39 no.5
    • /
    • pp.463-468
    • /
    • 2012
  • Background In the extremities of premature infants, the skin and subcutaneous tissue are very pliable due to immaturity and have a greater degree of skin laxity and mobility. Thus, we can expect wounds to heal rapidly by wound contraction. This study investigates wound healing of full-thickness defects in premature infant extremities. Methods The study consisted of 13 premature infants who had a total of 14 cases of full-thickness skin defects of the extremities due to extravasation after total parenteral nutrition. The wound was managed with intensive moist dressings with antibiotic and anti-inflammatory agents. After wound closure, moisturization and mild compression were performed. Results Most of the full-thickness defects in the premature infants were closed by wound contraction without granulation tissue formation on the wound bed. The defects resulted in 3 pinpoint scars, 9 linear scars, and 2 round hypertrophic scars. The wounds with less granulation tissue were healed by contraction and resulted in linear scars parallel to the relaxed skin tension line. The wounds with more granulation tissue resulted in round scars. There was mild contracture without functional abnormality in 3 cases with a defect over two thirds of the longitudinal length of the dorsum of the hand or foot. The patients' parents were satisfied with the outcomes in 12 of 14 cases. Conclusions Full-thickness skin defects in premature infants typically heal by wound contraction with minimal granulation tissue and scar formation probably due to excellent skin mobility.

Thermal Stress Evaluation by Elastic-Creep Analysis during Start-up of Boiler Header (보일러 헤더 기동시의 탄성 크리프 해석에 의한 열응력 평가)

  • Shin, Kyu-In;Yoon, Kee-Bong
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.17-22
    • /
    • 2009
  • Thermal stress and elastic creeping stress analysis was conducted by finite element method to simulate start-up process of a boiler header of 500MW standard fossil power plant. Start-up temperature and operating pressure history were simplified from the real field data and they were used for the thermal stress analysis. Two kinds of thermal stress analysis were considered. In the first case only temperature increase was considered and in the second case both of temperature and operating pressure histories were considered. In the first analysis peak stress was occurred during the temperature increase from the room temperature. Hence cracking or fracture may occur at the temperature far below the operating maximum temperature. In the results of the second analysis von Mises stress appeared to be higher after the second temperature increase. This is due to internal pressure increase not due to the thermal stress. When the stress components of radial(r), hoop($\theta$) and longitudinal(z) stress were investigated, compression hoop stress was occurred at inner surface of the stub tube when the temperature increased from room temperature to elevated temperature. Then it was changed to tension hoop stress and increased because of the operating pressure. It was expected that frequent start-up and shut-down operations could cause thermal fatigue damage and cracking at the stub tube hole in the header. Elastic-creeping analysis was also carried out to investigate the stress relaxation due to creep and stabilized stress after considerable elapsed time. The results could be used for assessing the creep damage and the residual life of the boiler header during the long-tenn service.

Liposuction in the Treatment of Lipedema: A Longitudinal Study

  • Dadras, Mehran;Mallinger, Peter Joachim;Corterier, Cord Christian;Theodosiadi, Sotiria;Ghods, Mojtaba
    • Archives of Plastic Surgery
    • /
    • v.44 no.4
    • /
    • pp.324-331
    • /
    • 2017
  • Background Lipedema is a condition consisting of painful bilateral increases in subcutaneous fat and interstitial fluid in the limbs with secondary lymphedema and fibrosis during later stages. Combined decongestive therapy (CDT) is the standard of care in most countries. Since the introduction of tumescent technique, liposuction has been used as a surgical treatment option. The aim of this study was to determine the outcome of liposuction used as treatment for lipedema. Methods Twenty-five patients who received 72 liposuction procedures for the treatment of lipedema completed a standardized questionnaire. Lipedema-associated complaints and the need for CDT were assessed for the preoperative period and during 2 separate postoperative follow-ups using a visual analog scale and a composite CDT score. The mean follow-up times for the first postoperative follow-up and the second postoperative follow-up were 16 months and 37 months, respectively. Results Patients showed significant reductions in spontaneous pain, sensitivity to pressure, feeling of tension, bruising, cosmetic impairment, and general impairment to quality of life from the preoperative period to the first postoperative follow-up, and these results remained consistent until the second postoperative follow-up. A comparison of the preoperative period to the last postoperative follow-up, after 4 patients without full preoperative CDT were excluded from the analysis, indicated that the need for CDT was reduced significantly. An analysis of the different stages of the disease also indicated that better and more sustainable results could be achieved if patients were treated in earlier stages. Conclusions Liposuction is effective in the treatment of lipedema and leads to an improvement in quality of life and a decrease in the need for conservative therapy.

The Result of Open Reduction and Fixation in Sternal Fracture with Displacement (흉골 전위골절에 대한 수술적 정복고정술의 결과)

  • Kim, Young-Jin;Cho, Hyun-Min
    • Journal of Trauma and Injury
    • /
    • v.23 no.2
    • /
    • pp.175-179
    • /
    • 2010
  • Purpose: Sternal fractures after blunt thoracic trauma can cause significant pain and disability. They are relatively uncommon as a result of direct trauma to the sternum and open reduction is reserved for those with debilitating pain and fracture displacement. We reviewed consecutive 11 cases of open reduction and fixation of sternum and tried to find standard approach to the traumatic sternal fractures with severe displacement. Methods: From December 2008 to August 2010, the medical records of 11 patients who underwent surgical reduction and fixation of sternum for sternal fractures with severe displacement were reviewed. We investigated patients' characteristics, chest trauma, associated other injuries, type of open reduction and fixation, combined operations, preoerative ventilator support and postoperative complications. Results: The mean patient age was 59.3years (range, 41~79). The group comprised 6 male and 5 female subjects. Among 11 patients who underwent open reduction and fixation for sternal fracture with severe displacement, 6 cases had isolated sternal fractures and the other 5 patients had associated other injuries. Sternal fractures were caused by car accidents (9/11, 81.8%), falling down (1/11, 9.1%) and direct blunt trauma to the sternum (1/11, 9.1%), respectively. 3 of the 7 patients (42.9%) who underwent sternal plating with longitudinal plates showed loosening of fixation. Otherwise, none of the 4 patients who underwent surgical fixation using T-shaped plate had stable alignment of the fracture. Conclusion: Sternal fractures with severe displacement need to be repaired to prevent chronic pain, instability of the anterior chest wall, deformity of the sternum, and even kyphosis. In the present study, a T-shaped plate with a compression-tension mechanism constitutes the treatment of choice for displaced sternal fractures.

Studies on the Physical and Mechanical Properties of Imported and Domestic Corks (수입(輸入)코르크와 국산(國産)코르크의 물리(物理)·기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.45-54
    • /
    • 1993
  • This study examines the differences in structures, physical and mechanical properties between domestic(Quercus variabilis Blume) and foreign(Quercus suber L.) corks. The results obtained are as follows: 1. The cork tissue consists of cork cells, lenticels, sclereids and dark-brown zone. There was a significant difference in ratio of cork cells between foreign cork(93 %) and domestic cork(87 %). The ring width and width of late cork of the foreign cork were wider than those of domestic cork. But the percentage of late cork of domestic cork was richer than that of foreign cork. The size of cork cell of foreign cork was larger by about two times than that of domestic cork. 2. The density was slightly higher in domestic cork(0.22 g/$cm^3$) than in foreign cork(0.19 g/$cm^3$). During first 24 hours, the amount of water absorption of the foreign cork was greater than that of domestic cork. However, after 24 hours, the tendency was reversed. The level of EMC was higher in domestic cork than in foreign cork. Total shrinkage in the radial and tangential directions was larger in domestic cork than tn foreign cork. In the longitudinal direction, the tendency was reversed. There was no difference in total swelling in three woody directions between the two corks. 3. The modulus of elasticity in compression in the logitudinal and tangential direction was higher in domestic cork than in foreign cork, but the tendency was reversed in the radial direction. Both corks showed 95% of recovery rate after 24 hours when they were compressed by 0.5. There were no differences in tension strength and Brinell,s hardness bet ween domestic and foreign corks.

  • PDF

Mismatch Limit Load Analyses for V-groove Welded Pipe with Through-wall Circumferential Defect in Centre of Weld (원주방향 관통균열이 용접부 중앙에 존재하는 V-그루브 맞대기 용접배관의 한계하중 해석)

  • Kim, Sang-Hyun;Han, Jae-Jun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1379-1386
    • /
    • 2013
  • The present work reports the mismatch limit loads for a V-groove welded pipe for a circumferential crack using finite element (FE) analyses. To integrate the effect of groove angles on mismatch limit loads, one geometry-related slenderness parameter was modified by relevant geometric parameters including the groove angle, crack depth, and root opening based on plastic deformation patterns in the theory of plasticity. Circumferential through-wall cracks are located at the centre of the weldments with two different groove angles ($45^{\circ}$, $90^{\circ}$). With regard to the loading conditions, axial (longitudinal) tension and bending are applied for all cases. For the parent and weld metal, elastic-perfectly plastic materials are considered to simulate and analyze under- and over-matching conditions in plasticity. The overall results from the proposed solutions are found to be similar to the FE results.