• Title/Summary/Keyword: Longitudinal moment

Search Result 268, Processing Time 0.023 seconds

Quadratic inference functions in marginal models for longitudinal data with time-varying stochastic covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.651-658
    • /
    • 2013
  • For the marginal model and generalized estimating equations (GEE) method there is important full covariates conditional mean (FCCM) assumption which is pointed out by Pepe and Anderson (1994). With longitudinal data with time-varying stochastic covariates, this assumption may not necessarily hold. If this assumption is violated, the biased estimates of regression coefficients may result. But if a diagonal working correlation matrix is used, irrespective of whether the assumption is violated, the resulting estimates are (nearly) unbiased (Pan et al., 2000).The quadratic inference functions (QIF) method proposed by Qu et al. (2000) is the method based on generalized method of moment (GMM) using GEE. The QIF yields a substantial improvement in efficiency for the estimator of ${\beta}$ when the working correlation is misspecified, and equal efficiency to the GEE when the working correlation is correct (Qu et al., 2000).In this paper, we interest in whether the QIF can improve the results of the GEE method in the case of FCCM is violated. We show that the QIF with exchangeable and AR(1) working correlation matrix cannot be consistent and asymptotically normal in this case. Also it may not be efficient than GEE with independence working correlation. Our simulation studies verify the result.

Condition assessment of raking damaged bulk carriers under vertical bending moments

  • Kim, Do Kyun;Yub, Su Young;Choi, Han Suk
    • Structural Engineering and Mechanics
    • /
    • v.46 no.5
    • /
    • pp.629-644
    • /
    • 2013
  • This paper concerns about the raking damages on the ultimate residual hull girder strength of bulk carriers by applying the modified R-D diagram (advanced method). The limited raking damage scenarios, based on the IMO's probability density function of grounding accidents, were carried out by using sampling technique. Recently, innovative method for the evaluation of the structural condition assessment, which covers the residual strength and damage index diagram (R-D diagram), was proposed by Paik et al. (2012). This concept is applied in the present study and modified R-D diagram, which can be considered vessel size effect, is then proposed. Four different types of bulk carrier structures, i.e., Handysize (37K), Supramax (57K), Kamsarmax (82K) and Capesize (181K) by Common Structural Rule (CSR), were applied to draw the general tendency. The ALPS/HULL, intelligent supersize finite element method, was employed for the ultimate longitudinal strength analysis. The obtained empirical formulas will be useful for the condition assessment of bulk carrier structures. It can also cover different sizes of the bulk carriers in terms of ultimate longitudinal strength. Important insights and findings with useful guidelines developed in this study are summarized.

A Study on an Independent 6WD/6WS of Electric Vehicle using Optimum Tire Force Distribution (최적 타이어 힘 분배 방법을 통한 전기차의 독립 6WD/6WS에 관한 연구)

  • Kim, Dong-Hyung;Kim, Chang-Jun;Kim, Young-Ryul;Han, Chang-Soo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.7
    • /
    • pp.632-638
    • /
    • 2010
  • This paper presents an optimum tire force distribution method for 6WD/6WS(6-Wheel-Drive and 6-Wheel-Steering) electric vehicles. Using an independent steering and driving system, the performance of 6WD/6WS vehicles can be improved, as, for example, with respect to their maneuverability under low speed and their stability at high speed. Therefore, there should be a control strategy for finding the optimum tire forces that satisfy the driver's command and minimize energy consumption. From the driver's commands (steering angle and accelerator/brake pedal stroke), the desired yaw moment, the desired lateral force, and the desired longitudinal force were obtained. These three values were distributed to each wheel as the torque and the steering angle, based on the optimum tire force distribution method. The optimum tire force distribution method finds the longitudinal/lateral tire forces of each wheel that minimize the cost function, which is the sum of the normalized tire forces. Next, the longitudinal/lateral tire forces of each wheel are converted into the reference torque inputs and the steering wheel angle inputs. The proposed method was tested through a simulation, and its effectiveness was verified.

Generalized methods of moments in marginal models for longitudinal data with time-dependent covariates

  • Cho, Gyo-Young;Dashnyam, Oyunchimeg
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.4
    • /
    • pp.877-883
    • /
    • 2013
  • The quadratic inference functions (QIF) method proposed by Qu et al. (2000) and the generalized method of moments (GMM) for marginal regression analysis of longitudinal data with time-dependent covariates proposed by Lai and Small (2007) both are the methods based on generalized method of moment (GMM) introduced by Hansen (1982) and both use generalized estimating equations (GEE). Lai and Small (2007) divided time-dependent covariates into three types such as: Type I, Type II and Type III. In this paper, we compared these methods in the case of Type II and Type III in which full covariates conditional mean assumption (FCCM) is violated and interested in whether they can improve the results of GEE with independence working correlation. We show that in the marginal regression model with Type II time-dependent covariates, GMM Type II of Lai and Small (2007) provides more ecient result than QIF and for the Type III time-dependent covariates, QIF with independence working correlation and GMM Type III methods provide the same results. Our simulation study showed the same results.

Assessment of Ultimate Longitudinal Strength of a VLCC considering Kinematic Displacement Theory (기하학적 변위 이론을 적용한 VLCC 최종종강도 평가)

  • Choung, Joonmo;Nam, Ji-Myung;Tayyar, Gokhan Tansel;Yoon, Sung-Won;Lee, Kangsu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.255-261
    • /
    • 2013
  • This paper presents prediction of ultimate longitudinal strength of a VLCC, "Energy Concentration" for which many benchmark studies have been carried out, based on kinematic displacement method proposed by Tayyar and Bayraktarkatal (2012). Kinematic displacement theory provides semi-analytical solution of average compressive strengths for various kinds of stiffened panels. The accuracy of average compressive strengths obtained from formulas of CSR(common structural rules) for tankers and kinematic displacement method are discussed in the fore part of this paper. Hull girder ultimate strengths using Smith method are also compared for different average compressive strengths. By comparing them with other benchmark results, it is concluded that the new method provides lower bounds, because hull girder strengths under the sagging and hogging moment conditions approach nearly lower bounds.

Seismic Performance and Flexural Over-strength of Circular RC Column (원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.49-58
    • /
    • 2013
  • Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with constant axial load. Test specimens were designed with 4.5 aspect ratio. The selected test variables are longitudinal steel ratio, transverse steel ratio, yielding strength of longitudinal steel and axial load ratio. The test results of columns with different longitudinal steel ratio, transverse steel ratio and axial load ratio showed different seismic performance such as equivalent damping ratio, residual displacement and effective stiffness. It was found that the column with low strength of longitudinal steel showed significantly reduced seismic performance, especially for equivalent damping ratio and residual displacement. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications (Limited state design).

The Direct Yaw-Moment Control regarding to control the vehicle handling condition (차량 운전조건과 속도변화를 고려한 요우모멘트제어)

  • Jang, Young-Jin;Nam, Kwang-Hee
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.69-70
    • /
    • 2013
  • By using differential force between left and right wheel, lateral motion can be controlled known as Direct Yaw-moment Control (DYC). In previous researches, DYC control is proposed to increase the stability of the vehicle, but maneuverability has not been discussed sufficiently. The car handling condition which is called the index parameter of maneuverability is dependent on the vehicle velocity and steering angle. To achieve the desired vehicle's cornering path, the car handling condition must be considered sufficiently. In this paper, the novel DYC method is proposed which gives the car handling condition regardless of the longitudinal speed. The proposed controller is based on the PI controller to feedback the curvature parameter. The controlled system shows the advantages of DYC regarding to the reference trajectory by the dual motor system. With respect to the uncontrolled model, the effectiveness of the proposed method is validated by numerical examples.

  • PDF

Nonlinear vibration of Timoshenko beam due to moving loads including the effects of weight and longitudinal inertia of beam

  • Wang, Rong-Tyai
    • Structural Engineering and Mechanics
    • /
    • v.10 no.3
    • /
    • pp.197-209
    • /
    • 2000
  • The effects of weight and axial inertia of a beam are taken into account for studying the nonlinear vibration of the Timoshenko beam due to external loads. The combination of Galerkins method and Runge-Kutta method are employed to obtain the dynamic responses of the beam. A concentrated force and a two-axle vehicle traversing on the beam are taken as two examples to investigate the response characteristics of the beam. Results show that the effect of axial inertia of the beam increases the fundamental period of the beam. Further, both the dynamic deflection and the dynamic moment of the beam obtained with including the effect of axial inertia of the beam are greater than those of the beam without including that effect of the beam.

Flexural analysis of steel fibre-reinforced concrete members

  • Chalioris, Constantin E.;Panagiotopoulos, Thomas A.
    • Computers and Concrete
    • /
    • v.22 no.1
    • /
    • pp.11-25
    • /
    • 2018
  • A numerical approach for the evaluation of the flexural response of Steel Fibrous Concrete (SFC) cross-sections with arbitrary geometry, with or without conventional steel longitudinal reinforcing bars is proposed. Resisting bending moment versus curvature curves are calculated using verified non-linear constitutive stress-strain relationships for the SFC under compression and tension which include post-peak and post-cracking softening parts. A new compressive stress-strain model for SFC is employed that has been derived from test data of 125 stress-strain curves and 257 strength values providing the overall compressive behaviour of various SFC mixtures. The proposed sectional analysis is verified using existing experimental data of 42 SFC beams, and it predicts the flexural capacity and the curvature ductility of SFC members reasonably well. The developed approach also provides rational and more accurate compressive and tensile stress-strain curves along with bending moment versus curvature curves with regards to the predictions of relevant existing models.

An Experimental and Analytical Study on Axial Force-Moment Capacity of High-Strength Concrete Column under Eccentric Loads (편심을 받은 고강도 콘크리트 기둥의 출력-모멘트 강도에 관한 실험 및 해석적 연구)

  • 최창익;손혁수;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.468-474
    • /
    • 1997
  • High strength concrete is a more effective material for columns subject to axial force and moment than for other structural elements. The purpose of this study is to review strength calculation methods for high strength concrete columus by comparison of analytical values and experimental results. The variables of column test under eccentric loading were concrete compressive strength, longitudinal steel ratio, and eccentricity of load. The tied column sections of 120×120mm and 210×210mm were tested and the eccentricity of load varied in the range from 0.16 times to 0.54 times the column depth. The analytical results using the stress-strain relationship to 0.54 times the column depth. The analytical results using the stress-strain relationship as well as the ACI's rectangular block, Zia's modified block, and the trapezoidal block are compared with experimentally obtained data, and discussed in this paper.

  • PDF