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Abstract

For the marginal model and generalized estimating equations (GEE) method there
is important full covariates conditional mean (FCCM) assumption which is pointed out
by Pepe and Anderson (1994). With longitudinal data with time-varying stochastic
covariates, this assumption may not necessarily hold. If this assumption is violated, the
biased estimates of regression coefficients may result. But if a diagonal working corre-
lation matrix is used, irrespective of whether the assumption is violated, the resulting
estimates are (nearly) unbiased (Pan et al., 2000).The quadratic inference functions
(QIF) method proposed by Qu et al. (2000) is the method based on generalized method
of moment (GMM) using GEE. The QIF yields a substantial improvement in efficiency
for the estimator of 8 when the working correlation is misspecified, and equal efficiency
to the GEE when the working correlation is correct (Qu et al., 2000).In this paper, we
interest in whether the QIF can improve the results of the GEE method in the case
of FCCM is violated. We show that the QIF with exchangeable and AR(1) working
correlation matrix cannot be consistent and asymptotically normal in this case. Also it
may not be efficient than GEE with independence working correlation. Our simulation
studies verify the result.

Keywords: FCCM assumption, GEE, longitudinal data, marginal model, QIF, time-
varying stochastic covariates.

1. Introduction

In longitudinal analysis, there are several conditional expectations such as full covariate
conditional mean F(Y;; | X;1,...,Xin,), partly conditional mean E(Y;¢|subset{X;1, ..., Xin,}
and cross-sectional mean F(Y;; | X;:). Then the first consideration for marginal regression
analysis of longitudinal data with time-varying stochastic covariates is to determine the
target of interest - that is whether full covariate conditional mean or certain partly condi-
tional mean is of interest. The second issue is identification of valid and efficient estimation
method.
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If one interest in cross-sectional association, we may choose the likelihood based methods
such as linear and generalized linear mixed model and GEE method for marginal model.
However there is implicit FCCM assumption that the conditional mean of the ¥ response,
given X;1,..., X;p,, depends only on X;.

E(Yiy | X, Xin,) = E(Yi | Xit) (1.1)

With time-stationary covariates, this assumption necessarily holds since X;;=Xj; for all
occasions k # t. Also, with time-varying covariates that are fixed by design of the study,
the assumption also holds since values of the covariates at any occasion are determined a
priori by study design and in a manner completely unrelated to the longitudinal response
(Fitzmaurice et al., 2004).

However, when a covariate is time-varying and stochastic, this assumption may not nec-
essarily hold. At first, it is important to check the assumption made in (1.1), namely, that
the conditional mean of the Y;;, given the entire time-varying covariate profile X;1, ..., Xin,,
depends only on the covariate value at the t*" occasion, Xj;.

For example, the assumption will be violated when the current value of Y, given X;;
predicts the subsequent value of X;;11. In this case E(Yy | Xit, Xitw1) # E(Y | Xit)
and X;;41 is said to confound the relationship between Y;; and X;;. For the AR(1) model
for longitudinal data, the FCCM assumption is usually violated. Also, the model which
was considered by Diggle et al. (2002) has AR(1) time-varying covariate and response vari-
able of the depends on both current and lagged values of the covariate. For this model,
E (Y | Xit—1, Xit) # E (Yy | Xit) which means the FCCM assumption is violated.

In these cases, the regression parameters may be biased. Pepe and Anderson (1994) pointed
out that when we use the GEE to do marginal regression, either a diagonal working corre-
lation matrix should be used, or FCCM assumption needs to be validated. It means that
they suggest using the independent working correlation matrix as a “safe” analysis choice.
However the using working-independence correlation matrix in GEE guarantees consistency,
but entails a serious loss of efficiency in many cases (Fitzmaurice, 1995).

The QIF method proposed by Qu et al. (2000) is an important and powerful alternative to
the GEE and it does not require more assumptions than does the GEE method, but yields a
substantial improvement in efficiency for the estimator of B when the working correlation is
misspecified, and equal efficiency to the GEE when the working correlation is correct. The
QIF is the method based on GMM introduced by Hansen (1982).

Lai and Small (2007) proposed another alternative GMM for the marginal regression
analysis of longitudinal data with time-dependent covariates. They divided time-dependent
covariates into three possible types and showed that their GMM has advantages over the
GEE with independence working correlation for some type of time-dependent covariates.

In this paper, we interest in whether QIF has same problem as GEE or it can improve the
results of the GEE method in the case of FCCM is violated. We show that the QIF with
exchangeable and AR(1) working correlation matrix cannot be consistent and asymptotically
normal in this case. Also it may not be efficient than GEE with independence working
correlation. Our simulation studies verify the result.

This paper was organized as following: Section 2 shows that how the GEE estimator
with independence working correlation can be consistent in the case of FCCM is violated
and Section 3 introduces the review of QIF of Qu et al. (2000). Section 4 shows QIF for
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longitudinal data with time-varying stochastic covariates. Section 5 illustrates the results of
simulation studies and final section is summary.

2. GEE estimation for longitudinal data with time-varying
stochastic covariates

Consider the marginal model for the cross-sectional mean p;; = E(Yj|X;). The GEE
assumes that the marginal mean pu;; is a function of the covariates through a link function
g with g(us) = X[,8, and the variance of Y}, is a function of the mean var(Y;) = ®V (i),
where @ is the dispersion parameter.

The GEE estimator of the regression parameter u;; is defined by

m ) T
S5, W)=Y (aa’g) Wi (Vi pui) = 0 (2.1)

—1
where W;=V,~ 1 (A1/2R (« )A2/2> with A; being the diagonal matrix of the marginal

variances, var(Y;;) and R;(«) being the working correlation matrix.
The GEE estimator is consistent if the estimating function is unbiased:

E(S,(8,W)) = 0. (2:2)
The estimating equations for the k-th covariates can be written as sums

Sp(B, W)= Z Z Z Dlwit; (Yie—pae) (2.3)

i=1 | t=1 j=1

where pis = E(Yit| Xit), Dige= a%” and w;;; is the ¢, j-th element of the weight matrix W;.
In order to ensure that E(S; (8, W)) = 0 we can consider the expectation of each summand
n (2.3),

E [D;‘,;kwitj (th Mzt } = F {E [ ”szt] (Yét—,uit) | Xit,. .. ,Xmi}}

=FE {ngwitj [E(Y ;| X, - aXmi)*#it]} (2.4)
If the FCCM condition is satisfied then pi:= F (Yt | Xi1,...,Xin,) = E (Yt | Xit) and the
estimating function is E(S; (8, W)) = 0 and unbiased. On the other hand, if FCCM does
not hold py=FE (Vi | Xit) # E (Yie | Xia, - .-, Xin,), the estimating function will likely be
biased and result in inconsistent estimates for the cross-sectional mean structure.
However, if diagonal weight matrix is used, then estimating equations for k-th covariates
simplifies to

N g
Z<8M1> i (Yi—pi) = Z [Zngwitt(Yituit) (2.5)

=1 i=1 Lt=1

and the expectation of each summand

E[D;‘,;kwitt(yét—ﬂit)] =F {E [Dﬁkwm(Yn—un) | Xit} }ZE{Dkaitt [E(Yit|Xit)—/$it]} (2-6)
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will have zero provided that pu=FE(Y,,|X;). It means that using independence working
correlation in GEE can leads to consistent estimators.

However, for time-dependent covariates, Fitzmaurice (1995) shows that the independent
working correlation can result in a substantial loss of efficiency for estimation of the co-
efficients associated with the time-dependent covariates and provides an example in which
using the independent working correlation is only 60% efficient relative to the true correlation
structure.

In the next section, we introduce QIF of Qu et al. (2000), new statistical methodology
developed for the estimation and inference in longitudinal data analysis in marginal model.

3. QIF estimation for longitudinal data with time-varying
stochastic covariates

3.1. Specification and estimation of QIF

The GEE solves the equation (2,1). The QIF is derived by observing that the inverse of
the working correlation matrix can be approximated by a linear combination of several basis

matrices:
m

R71:Zai]\/[i (31)
i=1

where M --- , M,, are known matrices and ay,--- ,a,, are unknown constant.
Substituting (3.1) into (2,1), consider the following class of estimating functions:

Nl

S _ al aMz ! _% - Ry
5(B,W)=>" A7 (ar My+ .. Aam M) A; 2 (Yie ). (3.2)

I\ 0B

Define the ‘extended score’ gn to be

N .
()= 5 ) =+ . SNCEY

Norou\T ,;' 1
> (%) A; 2 My A; 2 (Yi—pi)
i=1

The vector gy contains more estimating equations than parameters, the GMM can be
applied and define the quadratic inference function to be

Qn(B) =gnCxgn (3.4)

N

where On=(1/N*) ) 0:(8)g:(8). (3.5)
i=1
The quadratic inference function estimator B\ is then defined to be

Bzargminﬁ QAn(B) . (3.6)
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The QIF estimator is obtained with no need to estimate the nuisance correlation param-
eter. Hence, the QIF method does not rely on whether an appropriate estimation of the
correlation parameter is available or not.

The QIF estimator has the usual large sample properties such as under suitable conditions,
the GMM estimator is consistent, asymptotically normal. Also QIF estimator is equal or
more efficient than the GEE estimator as shown Qu et al. (2000).

3.2. Comparison of QIF with GEE

As summarized Qu et al. (2000) and Song et al. (2009), when the working correlation
structure is correctly specified, both the QIF and GEE are equally efficient. However, when
the working correlation structure is misspecified, the QIF is more efficient than the GEE.
Also the QIF is robust to outliers or contaminated data and provides both a goodness-of-fit
test to validate the first moment marginal mean assumption and a model selection criterion
to perform a stepwise regression analysis. These properties are either unavailable or difficult
to establish in the GEE method.

However, the QIF has some limitations. The QIF depends on the availability of the basis
matrices for a given correlation structure. Currently, the QIF is established only for four
types of working correlation structures: Independence, exchangeability, AR(1) and unstruc-
tured. The current version of a QIF cannot handle the unequally spaced repeated mea-
surements. Similar to the GEE, when missing data are present, the QIF works only under
MCAR.

4. QIF for longitudinal data with time-varying stochastic covariates

As said in Section 2, the GEE estimation has limitation in that B is not necessarily con-
sistent when covariates vary over time (Pepe and Anderson, 1994, Davis, 2002). Specifically,
(2.2) does not necessarily have expectation zero unless either we have valid FCCM assump-
tion or we use working independence.

The QIF estimators can be more efficient than estimators from GEE even the working
correlation matrix is misspecified in case FCCM is hold. Then in case of FCCM is violated,
whether QIF has the same problem as GEE?

1. If we use diagonal working correlation in QIF, we can approximate as R~!'= al. Then

L& v & o\ L
(@)= g L) 3 (55) 4w (a.1)

In this case, dimension of the extended score is the same as the dimension of parameters,
then minimizing QIF is equivalent to solving gn(8) = 0 by method of moment.

This is GEE and in the case of independence working correlation, it can be unbiased
for the longitudinal data with time-varying stochastic covariates. It means that if FCCM
violated, using R~'= al in QIF will result as GEE approach.

2. Exchangeable or AR(1) working correlation is used in QIF, it can be written as

R_1:a1[+a2M1.

(Qu et al., 2000; Examples 1, 2).
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In this case, GEE are

N

Z<a“1> A7 (ayT+azMy) A ? (Vi) =0 (4.2)
=1

and QIF will be /

Qn(B)=gnCy'gn (4.3)

where

ﬁ(%) o (Vi)
> () a7 A v

i=1

N
O = (372) S (ai(5) (4.5)

As said previous, the QIF based on GMM method and the GMM estimator will be con-
sistent in the case the moment conditions are correct.
To be moment conditions are correct,

1N
N; N

§: (6%7(;0))TA;1 (Yi—pi(Bo))
aNBo)=E| = - o
5 (8%7(550)) A; 2M1A > (Yi—p1i(Bo))

i=1

T
When FCCM is violated, we are assured E( va 1 (8”5(50’) AN (Yi—pi(Bo)))= 0 as GEE

n (2.6). But we cannot assured E( Zf;l (a‘“(’BO ) A Y2 A7 1/2(Y —1i(85))) = 0. It fol-
lowed from (2.4) in case ;= E(Yi | Xit) ;é E (Y \ Xit,. .. 7Xmi). That is, some of the
moment conditions may be incorrect. So the QIF estimator cannot be consistent and asymp-
totically normal by Hansen’s theorem (Hansen, 1982).

In summary, when we use the QIF in marginal regression for longitudinal data with time-
varying stochastic covariates, either FCCM assumption needs to be validated or indepen-
dence working correlation matrix should be used.

5. Simulation study

Setting 1. We consider the model of time-varying covariate vector X; which is standardized
AR-1 Gaussian process with autocorrelation parameter p. This setting was considered by
Diggle et al. (2002)

Yie = Yo + M1 Xi + 72 Xi—1 + b + ey (5.1)
Xit = pXis—1 + €5

where b;, e, €;; are mutually independent, b; ~ N(0,1),e;; ~ N(0,1) and €;; ~ N(0,1— p?),
Xio ~ N(0,1) and X;; ~ N(0,1). This model implies

E(Y | X1, .. Xin) =70t Xit+72Xit—1 (5.3)
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but yields the marginal mean
E(Y ;| Xit) =Bo+B1Xit (5.4)

where B,=7y and S1=71+72*p. So FCCM assumption is violated.

We consider three estimators: 1) GEE/QIF with independence working correlation (GEE-
ind/QIF-ind), 2) QIF using AR-1 working correlation (QIF-AR(1)), 3) QIF using exchange-
able working correlation (QIF-exch).

Although current version of QIF can handle four kinds of working correlation structure as
said in Section 3.2, QIF with unstructured working correlation use adaptive QIF which used
variance matrix of responses instead of basic matrices. (Qu et al., 2003). So unstructured
working correlation is not compared.

We investigated several design features for this model and simulated 500 data sets each of
which contained n=20, 50, 100 subject measures, 6, 10 time points and p=0.3, 0.5, 0.8 with
70207 71:17 ’72:1

We calculated bias of parameters and mean squared error (MSE) and simulated relative
efficiency (SRE) as following:

MSE of the GEE—ind estimator
MSE of the QIF estimator

. 2 2
MSE = E(B,-B0) +E(B,—81) , SRE =

We interested in the covariate distribution which have broad range of autocorrelation pa-
rameter values. Simulation results for p= 0.3, 0.5, 0.8 show that QIF results cannot be effi-
cient than GEE-ind. The QIF-AR(1) working correlation is viewed better than the QIF-exch
working correlation. This is because AR(1) working correlation close to the true correlation
more than exchangeable working correlation. When autocorrelation parameter approached
1, the covariates are resembling to invariant covariate and some QIF results are becom-
ing better. But we cannot say that the QIF-AR(1) result is better than the GEE-ind. The
simulation result for p= 0.5 is shown as example.

Table 5.1 Bias, MSE, SRE for p = 0.5 for Setting 1

. . n=20 n=>50 n=100

Working correlation =6 =10 =6 =10 =6 =10
BiasBo 0.005 20.008  0.008  -0.003  -0.006  0.006
. ) Biasf1 -0.011 -0.001  -0.018 -0.015 -0.023  -0.015
GEE-ind/QIF-ind MSE 0.105 0.091 0.045 0.033 0.022 0.019

SRE 1 1 1 1 1 1
BiasBo -0.005 -0.008  0.008 -0.004 -0.006 _ 0.006
BiasB1 -0.009 -0.008  -0.018 -0.012  -0.023  -0.014
QIF-AR(1) MSE 0.112 0.107 0.047 0.036 0.022 0.019
SRE 0.940 0.857 0.976 0.926 0.988 0.971
Biasho 20.336 20.008  0.034 0.017  -0.022 _ 0.002
QIF-exch BiasB1 0.357 0.008  -0.015 -0.014 -0.034 -0.014

MSE 104.972 0.351 0.410 0.433 0.332 0.038
SRE 0.001 0.260 0.110 0.077 0.065 0.493

Setting 2. In the next case, we consider the model (5.1) and (5.2), but covariate Xi which is
AR(1) Gaussian process with variance 1/(1 — p?). Specifically, X;; ~ N(0,1/(1 — p?)) and
€;+ ~ N(0,1) for previous setting. For this case, the variance of the covariate X; is more
than 1. For this case we also could not found the best result from QIF than GEE-ind.



658 Gyo-Young Cho - Oyunchimeg Dashnyam

Table 5.2 Bias, MSE, SRE for p = 0.5 for Setting 2
n=20 n=>50 n=100

t=6 t=10 t=6 t=10 t=6 t=10
Biasfo 0.003 0.008 0.002 -0.005 0.001 -0.006
Biaspi -0.032 -0.011 -0.016 -0.005 -0.024 -0.014
MSE 0.101 0.071 0.039 0.03 0.019 0.016
SRE 1 1 1 1 1 1
Biasfo 0.002 0.015 0.001 -0.005 0.001 -0.006
Biasf1 -0.032 -0.02 -0.015 -0.002 -0.024 -0.014

Working correlation

GEE-ind/QIF-ind

QIF-AR(1) MSE 0.108 0.085 0.041 0.033 0.019 0.016
SRE 0.931 0.838 0.967 0.928 0.997 0.976

Biasfo 0.005 0.019 -0.013 -0.009 0.001 -0.011

QIF-exch Biasf31 -0.031 -0.013 -0.018 -0.005 -0.025 -0.014

MSE 0.278 0.341 0.286 0.151 0.115 0.054
SRE 0.362 0.209 0.138 0.202 0.169 0.288

6. Summary

The QIF has several useful properties over the GEE in the case FCCM is satisfied. But for
the marginal regression model for time-varying stochastic covariates, specifically when the
FCCM assumption is violated, we say that the QIF do not provide consistent, asymptotically
normal and efficient estimators over GEE with independence working correlation estimator.

We say that when we use the QIF in marginal regression for longitudinal data with time-
varying stochastic covariates, either FCCM assumption needs to be validated or QIF with
independence working correlation matrix should be used.

Our simulation result showed that QIF with AR(1), exchangeable working correlation
cannot be efficient than GEE with independence working correlation as proved in Section 4.
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