• Title/Summary/Keyword: Longitudinal deformation profile

Search Result 9, Processing Time 0.025 seconds

Longitudinal Deformation Profile in Tunnel using Measured Data (계측자료를 이용한 터널의 종단변형도)

  • Jang, Won-Yil;Yang, Hyung-Sik;Chung, So-Keul
    • Tunnel and Underground Space
    • /
    • v.18 no.5
    • /
    • pp.338-342
    • /
    • 2008
  • Longitudinal deformation profile(LDP) has been obtained mostly by numerical analysis. In this study, LDP was plotted by measured data from horizontal inclinometer and crown settlement. Deformation of foe ahead was determined by comparing to the maximum deformation point and deformation of after excavation was determined by regression of the measured crown settlement data. The result shows that crown deformation began as f3r as 3D ahead of the face. Crown settlement at the face was 40% of ultimate deformation, which was 10% higher than numerical results, and the deformation converged after excavation of 4D.

An investigation on tunnel deformation behavior of expressway tunnels

  • Chen, Shong-Loong;Lee, Shen-Chung
    • Geomechanics and Engineering
    • /
    • v.21 no.2
    • /
    • pp.215-226
    • /
    • 2020
  • The magnitude and distribution of tunnel deformation were widely discussed topics in tunnel engineering. In this paper, a three-dimensional (3D) finite element program was used for the analysis of various horseshoe-shaped opening expressway tunnels under different geologies. Two rock material models - Mohr-Coulomb and Hoek-Brown were executed in the process of analyses; and the results show that the magnitude and distribution of tunnel deformation were close by these two models. The tunnel deformation behaviors were relevant to many factors such as cross-sections and geological conditions; but the geology was the major factor to the normalized longitudinal deformation profile (LDP). If the time-dependent factors were neglected, the maximum displacements were located at the distance of 3 to 4 tunnel diameters behind the excavation face. The ratios of displacement at the excavation face to the maximum displacement were around 1/3 to 1/2. In general, the weaker the rock mass, the larger the ratio. The displacements in front of the excavation face were decreased with the increasement of distance. At the distance of 1.0 to 1.5 tunnel diameter, the displacements were reduced to one-tenth of the maximum displacement.

Finite Element Analysis of Slab Deformation under the Width Reduction in Hot Strip Mill (열간압연 폭압하시 슬래브 변형거동의 유한요소해석)

  • 천명식;정제숙;안익태;문영훈
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.668-674
    • /
    • 2003
  • Rigid-plastic finite element analyses on the deformation of slabs at various width reductions have been performed. By using commercial finite element code, dog-bone profile, crop profile and the longitudinal width profile after edging and Horizontal rolling have been analysed. The deformation behavior of slab for the heavy edger mill has also been compared with that for the sizing press. From the deformation analyses, it was found that the sizing press-horizontal rolling method is more efficient in width reduction than that of heavy edger mill-horizontal rolling. The results of finite element analyses fer the deformation of slab were well confirmed by the actual operational data. It was found that the amount of width variation after sizing and rolling is about 5∼10mm.

Longitudinal Deformation Characteristics during Excavation of a old Tunnel in Operation (노후터널의 운영중 터널확대시 지반종단변형특성에 관한 연구)

  • Baek, Ki-Hyun;Kim, Woong-Ku;Seo, Kyoung-Won;You, Dong-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.47-54
    • /
    • 2011
  • In this paper, longitudinal behaviors of a tunnel with respect to various conditions are analyzed, and a new equation of longitudinal deformation curve during tunnel expansion is proposed. Finally, the range of protection by a protector is investigated using the proposed equation. To achieve the objectives, numerical analysis according to the ground and expansion conditions is performed. The results show that the range of protection, when a 2 traffic lane tunnel is expanded to 4 traffic lanes, should cover at least 24m to backward and 35m forward.

A new formulation for calculation of longitudinal displacement profile (LDP) on the basis of rock mass quality

  • Rooh, Ali;Nejati, Hamid Reza;Goshtasbi, Kamran
    • Geomechanics and Engineering
    • /
    • v.16 no.5
    • /
    • pp.539-545
    • /
    • 2018
  • Longitudinal Displacement Profile (LDP) is an appropriate tool for determination of the displacement magnitude of the tunnel walls as a function of the distance to the tunnel face. Some useful formulations for calculation of LDP have been developed based on the monitoring data on site or by 3D numerical simulations. However, the presented equations are only based on the tunnel dimensions and for different quality of rock masses proposed a unique LDP. In the present study, it is tried to present a new formulation, for calculation of LDP, on the basis of Rock mass quality. For this purpose, a comprehensive numerical simulation program was developed to investigate the effect of rock mass quality on the LDP. Results of the numerical modelling were analyzed and the least square technique was used for fitting an appropriate curve on the derived data from the numerical simulations. The proposed formulation in the present study, is a logistic function and the constants of the logistic function were predicted by rock mass quality index (GSI). Results of this study revealed that, the LDP curves of the tunnel surrounded by rock masses with high quality (GSI>60) match together; because the rock mass deformation varies over an elastic range.

Real-time condition assessment of railway tunnel deformation using an FBG-based monitoring system

  • Zhou, Lu;Zhang, Chao;Ni, Yi-Qing;Wang, Chung-Yue
    • Smart Structures and Systems
    • /
    • v.21 no.5
    • /
    • pp.537-548
    • /
    • 2018
  • A tunnel deformation monitoring system is developed with the use of fiber Bragg grating (FBG) sensing technique, aiming at providing continuous monitoring of railway tunnel deformation in the long term, and early warning for the rail service maintainers and authorities to avoid catastrophic consequences when significant deformation occurs. Specifically, a set of FBG bending gauges with the ability of angle measurement and temperature compensation is designed and manufactured for the purpose of online monitoring of tunnel deformation. An overall profile of lateral tunnel displacement along the longitudinal direction can be obtained by implementing an array of the FBG bending gauges interconnected by rigid rods, in conjunction with a proper algorithm. The devised system is verified in laboratory experiments with a test setup enabling to imitate various patterns of tunnel deformation before the implementation of this system in an in-service high-speed railway (HSR) tunnel.

Analytical behavior of longitudinal face dowels based on an innovative interpretation of the ground response curve method

  • Rahimpour, Nima;Omran, Morteza MohammadAlinejad;Moghaddam, Amir Bazrafshan
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.363-372
    • /
    • 2022
  • One of the most frequent issues in tunnel excavation is the collapse of rock blocks and the dropping of rock fragments from the tunnel face. The tunnel face can be reinforced using a number of techniques. One of the most popular and affordable solutions is the use of face longitudinal dowels, which has benefits including high strength, flexibility, and ease of cutting. In order to examine the reinforced face, this work shows the longitudinal deformation profile and ground response curve for a tunnel face. This approach is based on assumptions made during the analysis phase of problem solving. By knowing the tunnel face response and dowel behavior, the interaction of two elements can be solved. The rock element equation derived from the rock bolt method is combined with the dowel differential equation to solve the reinforced ground response curve (GRC). With a straightforward and accurate analytical equation, the new differential equation produces the reinforced displacement of the tunnel face at each stage of excavation. With simple equations and a less involved computational process, this approach offers quick and accurate solutions. The FLAC3D simulation has been compared with the suggested analytical approach. A logical error is apparent from the discrepancies between the two solutions. Each component of the equation's effect has also been described.

Investigation of the behavior of a tunnel subjected to strike-slip fault rupture with experimental approach

  • Zhen Cui;Tianqiang Wang;Qian Sheng;Guangxin Zhou
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.477-486
    • /
    • 2023
  • In the studies on fault dislocation of tunnel, existing literatures are mainly focused on the problems caused by normal and reverse faults, but few on strike-slip faults. The paper aims to research the deformation and failure mechanism of a tunnel under strike-slip faulting based on a model test and test-calibrated numerical simulation. A potential faulting hazard condition is considered for a real water tunnel in central Yunnan, China. Based on the faulting hazard to tunnel, laboratory model tests were conducted with a test apparatus that specially designed for strike-slip faults. Then, to verify the results obtained from the model test, a finite element model was built. By comparison, the numerical results agree with tested ones well. The results indicated that most of the shear deformation and damage would appear within fault fracture zone. The tunnel exhibited a horizontal S-shaped deformation profile under strike-slip faulting. The side walls of the tunnel mainly experience tension and compression strain state, while the roof and floor of the tunnel would be in a shear state. Circular cracks on tunnel near fault fracture zone were more significant owing to shear effects of strike-slip faulting, while the longitudinal cracks occurred at the hanging wall.

Free vibration of tapered BFGM beams using an efficient shear deformable finite element model

  • Nguyen, Dinh Kien;Tran, Thi Thom
    • Steel and Composite Structures
    • /
    • v.29 no.3
    • /
    • pp.363-377
    • /
    • 2018
  • An efficient and free of shear locking finite element model is developed and employed to study free vibration of tapered bidirectional functionally graded material (BFGM) beams. The beam material is assumed to be formed from four distinct constituent materials whose volume fraction continuously varies along the longitudinal and thickness directions by power-law functions. The finite element formulation based on the first-order shear deformation theory is derived by using hierarchical functions to interpolate the displacement field. In order to improve efficiency and accuracy of the formulation, the shear strain is constrained to constant and the exact variation of the cross-sectional profile is employed to compute the element stiffness and mass matrices. A comprehensive parametric study is carried out to highlight the influence of the material distribution, the taper and aspect ratios as well as the boundary conditions on the vibration characteristics. Numerical investigation reveals that the proposed model is efficient, and it is capable to evaluate the natural frequencies of BFGM beams by using a small number of the elements. It is also shown that the effect of the taper ratio on the fundamental frequency of the BFGM beams is significantly influenced by the boundary conditions. The present results are of benefit to optimum design of tapered FGM beam structures.