• 제목/요약/키워드: Longitudinal and complex influence

검색결과 20건 처리시간 0.019초

Analysis of Effect of Phase Error Sources of Polarization Components in Incoherent Triangular Holography

  • Kim, Soo-Gil
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.256-262
    • /
    • 2012
  • We derive the point-spread function of the reconstructed image from a point-source complex hologram, which includes phase error caused by polarization components, in the longitudinal direction of the point-spread function and analyze the effect of the error sources of polarization components having influence on image reconstruction of a point-source complex hologram in incoherent triangular holography.

수학수업 태도, 분위기, 만족도가 수학 학업성취도에 미치는 영향에 대한 종단연구 (A Longitudinal Study on the Influence of Attitude, Mood, and Satisfaction toward Mathematics Class on Mathematics Academic Achievement)

  • 김용석
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제34권4호
    • /
    • pp.525-544
    • /
    • 2020
  • 학업성취도에 영향을 미치는 요인은 다양하며, 요인들이 미치는 영향 또한 복합적으로 일어난다. 학업성취도에 영향을 미치는 요인들은 끊임없이 변화하기 때문에 성장을 예측·분석하는 종단연구가 필요하다. 본 연구는 서울교육종단 연구의 2014년도(중학교 2학년)부터 2017년(고등학교 2학년)까지의 종단자료를 활용하여 수학 학업성취도의 종단적인 변화양상이 유사한 그룹으로 나누고 그룹별 수학수업 태도, 분위기, 만족도의 변화양상과 영향을 살펴보았다. 연구결과, 1그룹(1456명, 68.3%)과 2그룹(677명, 31.7%) 학생들의 수학 학업성취도는 수학수업 태도가 직접적인 영향을 미치는 것으로 나타났으며, 수학수업 분위기와 만족도는 직접적인 영향을 미치지 못하는 것으로 나타났다. 또한, 수학수업 태도가 수학 학업성취도에 미치는 영향력은 그룹에 따라서도 다르게 나타났으며, 수학 학업성취도가 높은 2그룹의 학생들은 1그룹의 학생들보다 수학수업 태도, 분위기, 만족도가 높은 것으로 나타났다. 그리고 수학수업 태도와 분위기, 만족도는 중학교 2학년부터 고등학교 2학년기간 동안 지속적으로 변화하는 것으로 나타났으며, 그 변화의 폭은 적은 것으로 나타났다.

잠재성장모형을 사용한 청소년의 학업긴장이 불행감과 휴대전화 의존에 미치는 종단적·복합적 영향 분석 (Longitudinal and Complex Influence of Academic Strain on Unhappiness and Mobile Phone Dependency among Adolescents using Latent Growth Model)

  • 전상민
    • 디지털융복합연구
    • /
    • 제14권12호
    • /
    • pp.293-302
    • /
    • 2016
  • 본 연구는 시간이 경과함에 따라 청소년의 학업긴장과 불행감, 휴대전화 의존이 어떠한 변화 추이를 가지고, 학업긴장의 변화가 불행감과 휴대전화 의존의 변화에 어떠한 종단적 복합적 영향을 파악하여 이들 간의 악순환을 방지하는 방안 모색을 목적으로 한다. 이를 위하여 일반긴장이론을 개념적 연구틀로 설정하고, 한국청소년정책연구원의 제 2~4차 한국아동 청소년패널 1,589명의 청소년 응답치를 사용하여 잠재성장모형 분석을 수행하였다. 분석결과, 청소년의 학업긴장과 불행감, 휴대전화 의존은 모두 시간의 경과에 따라 지속적으로 증가하였다. 학업긴장의 초기값은 불행감의 초기값 및 휴대전화 의존의 초기값과 변화율에는 정적 영향을 미쳤고, 학업긴장의 변화율은 불행감의 변화율에 정적 영향을 미쳤다. 불행감의 변화율은 휴대전화 의존 변화율에 정적 영향을 미쳤다. 또한, 학업긴장의 변화율이 불행감의 변화율을 매개로 하여 휴대전화 의존의 변화율에 정적 영향을 미치는 것으로 나타났다. 이상의 연구결과를 바탕으로 본 연구는 청소년의 학습과 부정적 정서, 휴대전화 의존에 대한 유용한 시사점을 제공하였고, 상기 변수들의 변화의 근거에 대한 후속 연구를 제안하였다.

Computational study of road tunnel exposure to severe wind conditions

  • Muhic, Simon;Mazej, Mitja
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.185-197
    • /
    • 2014
  • Ventilation and fire safety design in road tunnels are one of the most complex issues that need to be carefully considered and analysed in the designing stage of any potential upgrade of ventilation and other fire safety systems in tunnels. Placement road tunnels space has an important influence on fire safety, especially when considering the effect of adverse wind conditions that significantly influence ventilation characteristics. The appropriate analysis of fire and smoke control is almost impossible without the use of modern simulation tools (e.g., CFD) due to a large number of influential parameters and consequently extensive data. The impact of the strong wind is briefly presented in this paper in the case of a longitudinally ventilated road tunnel Kastelec, which is exposed to various severe wind conditions that significantly influence its fire safety. The possibility of using CFD simulations in the analysis of the tunnel placement in space terms negative effect of wind influence on the tunnel ventilation is clearly indicated.

용접연결부의 실제 비드형상을 고려한 노치피로해석법 (Notch Fatigue Analysis Based on the Actual Bead Shape of Welded Joint)

  • 양박달치;박치모
    • 대한조선학회논문집
    • /
    • 제46권4호
    • /
    • pp.417-423
    • /
    • 2009
  • This paper is concerned with the fatigue behaviour of welded joints by the notch stress approach. The actual welded shape is complex and 3-dimensional that may influence greatly the fatigue strength. The purpose of the paper is to present a way of modelling the actual weld bead shape by using a 3-D Laser scanner for experimental models of steel plates with longitudinal fillet welds, and applying its results to a proper notch stress method for the fatigue strength. The present approach to assess the fatigue strength is quite promising with application to a variety of welded joints and effects of weld profiling to fatigue strength.

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • 제9권1호
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

A comprehensively overall track-bridge interaction study on multi-span simply supported beam bridges with longitudinal continuous ballastless slab track

  • Su, Miao;Yang, Yiyun;Pan, Rensheng
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.163-174
    • /
    • 2021
  • Track-bridge interaction has become an essential part in the design of bridges and rails in terms of modern railways. As a unique ballastless slab track, the longitudinal continuous slab track (LCST) or referred to as the China railway track system Type-II (CRTS II) slab track, demonstrates a complex force mechanism. Therefore, a comprehensive track-bridge interaction study between multi-span simply supported beam bridges and the LCST is presented in this work. In specific, we have developed an integrated finite element model to investigate the overall interaction effects of the LCST-bridge system subjected to the actions of temperature changes, traffic loads, and braking forces. In that place, the deformation patterns of the track and bridge, and the distributions of longitudinal forces and the interfacial shear stress are studied. Our results show that the additional rail stress has been reduced under various loads and the rail's deformation has become much smoother after the transition of the two continuous structural layers of the LCST. However, the influence of the temperature difference of bridges is significant and cannot be ignored as this action can bend the bridge like the traffic load. The uniform temperature change causes the tensile stress of the concrete track structure and further induce cracks in them. Additionally, the influences of the friction coefficient of the sliding layer and the interfacial bond characteristics on the LCST's performance are discussed. The systematic study presented in this work may have some potential impacts on the understanding of the overall mechanical behavior of the LCST-bridge system.

Mechanical behavior and simplified models for the post-tensioned prestressed concrete lining

  • Fan Yang;Kang Liu;Yan-qiao Wang;Ming Huang
    • Structural Engineering and Mechanics
    • /
    • 제86권1호
    • /
    • pp.17-27
    • /
    • 2023
  • To investigate the mechanical behavior of the post-tensioned prestressed concrete lining (PPCL), the desilting tunnel of the Xiaolangdi Hydro Project in China is adopted as a case, and a detailed three-dimensional continuum model verified by the observation results is established for the PPCL. The radial stresses, longitudinal stresses, axial forces and bending moments of the PPCL under the completed cable tension condition (CCTC) and design water pressure condition (DWPC) are analyzed, respectively. The numerical results reveal that the PPCL concrete is significantly compressed in the circumferential direction by the prestress, while the prestress has a negligible influence on the radial stresses of the PPCL concrete. It should be noted that the concrete near the anchor slots has a complex and adverse stress state with stress concentration, longitudinal tensioning and large bending moment. In addition, a simplified shell model and a further simplified beam model which can take the influences of the prestress loss and the anchor slot into consideration are proposed for the PPCL. The results of the simplified models are in a good agreement with these of the three-dimensional continuum model, and they can be used as efficient approaches for the structural design and analysis of the PPCL.

Main factors determining the shear behavior of interior RC beam-column joints

  • Costa, Ricardo;Providencia, Paulo
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.337-354
    • /
    • 2020
  • Reinforced concrete beam-column (RCBC) joints of laterally loaded unbraced frames are sometimes controlled by their shear behavior. This behavior relies on multiple and interdependent complex mechanisms. There are already several studies on the influence of some parameters on the shear strength of reinforced concrete joints. However, there are no studies methodically tackling all the most relevant parameters and quantifying their influence on the overall joint behavior, not just on its shear strength. Hence, considering the prohibitive cost of a comprehensive parametric experimental investigation, a nonlinear finite element analysis (NLFEA) was undertaken to identify the key factors affecting the shear behavior of such joints and quantify their influence. The paper presents and discusses the models employed in this NLFEA and the procedure used to deduce the joint behavior from the NLFEA results. Three alternative, or complementary, quantities related to shear are considered when comparing results, namely, the maximum shear stress supported by the joint, the secant shear stiffness at maximum shear stress and the secant shear stiffness in service conditions. Depending on which of these is considered, the lower or higher the relevance of each of the six parameters investigated: transverse reinforcement in the joint, intermediate longitudinal bars and diagonal bars in the column, concrete strength, column axial load and confining elements in transverse direction.

Study of central buckle effects on flutter of long-span suspension bridges

  • Han, Yan;Li, Kai;Cai, C.S.
    • Wind and Structures
    • /
    • 제31권5호
    • /
    • pp.403-418
    • /
    • 2020
  • To investigate the effects of central buckles on the dynamic behavior and flutter stability of long-span suspension bridges, four different connection options between the main cable and the girder near the mid-span position of the Aizhai Bridge were studied. Based on the flutter derivatives obtained from wind tunnel tests, formulations of self-excited forces in the time domain were obtained using a nonlinear least square fitting method and a time-domain flutter analysis was realized. Subsequently, the influences of the central buckles on the critical flutter velocity, flutter frequency, and three-dimensional flutter states of the bridge were investigated. The results show that the central buckles can significantly increase the frequency of the longitudinal floating mode of the bridge and have greater influence on the frequencies of the asymmetric lateral bending mode and asymmetric torsion mode than on that of the symmetric ones. As such, the central buckles have small impact on the critical flutter velocity due to that the flutter mode of the Aizhai Bridge was essentially the symmetric torsion mode coupled with the symmetric vertical mode. However, the central buckles have certain impact on the flutter mode and the three-dimensional flutter states of the bridge. In addition, it is found that the phenomenon of complex beat vibrations (called intermittent flutter phenomenon) appeared in the flutter state of the bridge when the structural damping is 0 or very low.