• 제목/요약/키워드: Longitudinal Wave Velocity

검색결과 84건 처리시간 0.028초

얇은 판재에서의 초음파 종파속도 측정 (Measurement of the Ultrasonic Longitudinal Wave Velocities in Thin Plate)

  • 안봉영;이승석;이재옥
    • 대한기계학회논문집
    • /
    • 제15권6호
    • /
    • pp.2181-2188
    • /
    • 1991
  • 본 연구에서는 주파수도메인에서의 측정방법중 진폭 스펙트럼 방법에 대한 이 론적 배경을 알아보고, 얇은 두께의 재료에 적용한 측정결과를 보이고자 하며, 비교적 두께가 두꺼운 재료에서의 측정결과를 위상 스펙트럼 방법으로의 측정 결과와 비교하 여 측정의 정확성을 서로 비교하였다.

Sound Propagation in 5CB Liquid Crystals Homogeneously Confined in a Planar Cell

  • Ko, Jae-Hyeon;Hwang, Yoon-Hwae;Kim, Jong-Hyun
    • Journal of Information Display
    • /
    • 제10권2호
    • /
    • pp.72-75
    • /
    • 2009
  • The Brillouin spectrum of 4'-n-pentyl-4-cyano-biphenyl (5CB) liquid crystals homogeneously confined in a planar liquid crystal (LC) cell was measured using a 6-pass tandem Fabry-Perot interferometer. By adopting a special right-angle scattering geometry, the sound velocity of 5CB was estimated from the Brillouin shift without knowing the refractive index. The sound velocity of the longitudinal wave propagating along the direction of the directors aligned parallel to the glass plates of the LC cell was 1784${\pm}$7 m/s at 300 K. The attenuation coefficient $\alpha$ was estimated to be approximately $1.9{\times}10^6m^{-1}$, which is about twice as large as that of the longitudinal sound wave propagating along the direction perpendicular to the directors. The present method may be very useful in the evaluation of the elastic properties of the materials used in display devices, whose refractive indices are not known.

탄성파를 이용한 안경렌즈 검사 (Ocular Lens Test using Elastic Wave)

  • 정맹식;조현수
    • 한국안광학회지
    • /
    • 제4권1호
    • /
    • pp.37-43
    • /
    • 1999
  • 굴절률이 같은 안경렌즈에 탄성파를 이용한 단색광의 회절무늬로부터 렌즈에 전달되는 탄성파의 속도를 측정하여 렌즈의 불량 유무(有無)를 확인 할 수 있다. 광학적 heterodyne 방법으로 광의 회절무늬를 얻어 종 탄성파의 속도를 측정한 결과 안경렌즈의 경우 중굴절 렌즈는 평균 6588.5575 m/s이고, 고굴절 렌즈는 평균 3973.53 m/s로 측정되었다.

  • PDF

Analysis of nonlocal Kelvin's model for embedded microtubules: Via viscoelastic medium

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Khedher, Khaled Mohamed;Shamim, Raja A.;Ahmad, Manzoor;Tounsi, Abdelouahed
    • Smart Structures and Systems
    • /
    • 제26권6호
    • /
    • pp.809-817
    • /
    • 2020
  • In cells, the microtubules are surrounded by viscoelastic medium. Microtubules, though very small in size, perform a vital role in transportation of protein and in maintaining the cell shape. During performing these functions waves propagate and this propagation of waves has been investigated using nonlocal elastic theory. But the effect of surrounding medium was not taken into account. To fill this gap, this study considers the viscoelastic medium along with nonlocal elastic theory. The analytical formulas of the velocity of waves, and the results reveal that the presence of medium reduces the velocity. The axisymmetric and nonaxisymmetric waves are separately discussed. Furthermore, the results are compared with the results gained from the studies of free microtubules. The presence of medium around microtubules results in the increase of the flexural rigidity causing a significant decrease in radial wave velocity as compared to axial and circumferential wave velocities. The effect of viscoelastic medium is more obvious on radial wave velocity, to a lesser extent on torsional wave velocity and least on longitudinal wave velocity.

초음파를 이용한 복합재료 기계적 특성값의 새로운 특정 방법 (A New Method for Characterization of Composites by Ultrasonics)

  • 장필성;전홍재
    • Composites Research
    • /
    • 제13권2호
    • /
    • pp.1-7
    • /
    • 2000
  • 일방향 복합재료의 기계적 특성값을 비파괴적으로 얻기 위하여 초음파를 이용한 새로운 시험 방법을 제안하였다. 제안된 접촉식 시험 방법에서, 파속도를 측정하기 위하여 종파용 탐촉자만이 through-transmission 방식으로 사용되었다. 알루미늄 쐐기와 알루미늄 직육면체 형태의 보조적인 매질이 시편의 양쪽에 부착되었다. 경사 입사된 종파는 쐐기에서 시편으로 전파되며, 입사된 파는 시편과 두 개의 매질의 경계면에서 연속적으로 모드 변환된다. 마지막 매질에서 종파로 모드 변환된 파속도를 측정함으로써 시편의 기계적 특성값을 결정하는데 필요한 모든 정보를 얻게된다. 이 과정에서 전단 강성 계수를 얻기 위해, 수신된 종파로부터 간접적으로 횡파의 속도를 측정하였다. 본 연구에는 재료의 이방성이 파에 미치는 영향 또한 고려되었다.

  • PDF

Non-Destructive Detection of Hydride Blister in PHWR Pressure Tube Using an Ultrasonic Velocity Ratio Method

  • Cheong Yong-Moo;Lee Dong-Hoon;Kim Sang-Jae;Kim Young-Suk
    • Nuclear Engineering and Technology
    • /
    • 제35권5호
    • /
    • pp.369-377
    • /
    • 2003
  • Since Zr-2.5Nb pressure tubes have a high risk for the formation of blisters during their operation in pressurized heavy water reactors, there has been a strong incentive to develop a method for the non-destructive detection of blisters grown on the tube surfaces. However, because there is little mismatch in acoustic impedance between the hydride blisters and zirconium matrix, it is not easy to distinguish the boundary between the blister and zirconium matrix with conventional ultrasonic methods. This study has focused on the development of a special ultrasonic method, so called ultrasonic velocity ratio method for a reliable detection of blisters formed on Zr-2.5Nb pressure tubes. Hydride blisters were grown on the outer surface of the Zr-2.5Nb pressure tube using a cold finger attached to a steady state thermal diffusion equipment. To maximize a difference in the ultrasonic velocity in hydride blisters and the zirconium matrix, the ultrasonic velocity ratio of longitudinal wave to shear wave, $V_L/V_S$, has been determined based on the flight time of the longitudinal echo and reflected shear echo from the outer surface of the tubes. The feasibility of the ultrasonic velocity ratio method is confirmed by comparing the contour plots reproduced by this method with those of the blisters grown on the Zr-2.5Nb pressure tubes.

주파수의 변화에 따른 원형관로내 층류맥동유동의 속도와 압력의 분포 (Distributions of the velocity and pressure of the pulsatile laminar flow in a pipe with the various frequencies)

  • 배신철;모양우
    • 설비공학논문집
    • /
    • 제9권4호
    • /
    • pp.561-571
    • /
    • 1997
  • In this paper, the fundamental equations are developed for the pulsatile laminar flow generated by changing the oscillatory flow with $0{\leq}f{\leq}48Hz$ into a steady one with $0{\leq}Re{\leq}2500$ in a rigid circular pipe. Analytical solutions for the wave propagation factor k, the axial distributions of cross-sectional mean velocity $u_m$ and pressure p are schematically derived and confirmed experimentally. The axial distributions of centerline velocity and pressure were measured by using Pitot-static tubes and strain gauge type pressure transducers, respectively. The cross-sectional mean velocity was calculated from the centerline velocity by applying the parabolic distribution of the laminar flow and it was confirmed by using the ultrasonic flowmeter. It was found that the axial distributions of cross-sectional mean velocity and pressure agree well with theoretical ones and depend only on the Reynolds number Re and angular velocity $\omega$.

  • PDF

Plane waves in an anisotropic thermoelastic

  • Lata, Parveen;Kumar, Rajneesh;Sharma, Nidhi
    • Steel and Composite Structures
    • /
    • 제22권3호
    • /
    • pp.567-587
    • /
    • 2016
  • The present investigation is to study the plane wave propagation and reflection of plane waves in a homogeneous transversely isotropic magnetothermoelastic medium with two temperature and rotation in the context of GN Type-II and Type-III (1993) theory of thermoelasticity. It is found that, for two dimensional assumed model, there exist three types of coupled longitudinal waves, namely quasi-longitudinal wave (QL), quasi-transverse wave (QTS) and quasi-thermal waves (QT). The different characteristics of waves like phase velocity, attenuation coefficients, specific loss and penetration depth are computed numerically and depicted graphically. The phenomenon of reflection coefficients due to quasi-waves at a plane stress free with thermally insulated boundary is investigated. The ratios of the linear algebraic equations. These amplitude ratios are used further to calculate the shares of different scattered waves in the energy of incident wave. The modulus of the amplitude and energy ratios with the angle of incidence are computed for a particular numerical model. The conservation of energy at the free surface is verified. The effect of energy dissipation and two temperatures on the energy ratios are depicted graphically and discussed. Some special cases of interest are also discussed.

Propagation of plane wave in transversely isotropic magneto-thermoelastic material with multi-dual-phase lag and two temperature

  • Lata, Parveen;Kaur, Iqbal;Singh, Kulvinder
    • Coupled systems mechanics
    • /
    • 제9권5호
    • /
    • pp.411-432
    • /
    • 2020
  • This research is devoted to the study of plane wave propagation in homogeneous transversely isotropic (HTI) magneto-thermoelastic rotating medium with combined effect of Hall current and two temperature due to multi-dual-phase lag heat transfer. It is analysed that, for 2-D assumed model, three types of coupled longitudinal waves (quasi-longitudinal, quasi-transverse and quasi-thermal) are present. The wave characteristics like phase velocity, specific loss, attenuation coefficients, energy ratios, penetration depths and amplitude ratios of transmitted and reflected waves are computed numerically and illustrated graphically and compared for different theories of thermoelasticity. Some particular cases are also derived from this research.

부착식 PSC 텐던의 종진동 메카니즘 (Longitudinal Vibration Mechanism of Grouted PSC Tendon)

  • 김병화;장정범;이홍표
    • 대한토목학회논문집
    • /
    • 제31권3A호
    • /
    • pp.261-267
    • /
    • 2011
  • 본 연구는 부착식 PSC 텐던에 도입된 긴장응력이 종진동 거동에 미치는 메커니즘을 규명한다. 텐던의 종방향 직선변형과 비틀림변형은 상호 연동하여 거동하고, 텐던에 도입된 긴장응력은 축강성과 비틀림강성에 영향을 미친다. 그러므로 텐던의 탄성파 속도를 계측함으로써 텐던에 도입된 긴장응력을 추정 할 수 있다. 이는 텐던의 탄성파속도가 축강성과 비틀림강성의 함수이기 때문에 가능하다. 도입 긴장력이 다른 6개의 PSC 보 시험체에 대한 종진동 실험결과를 이용하여 텐던의 종진동 특성과 도입 긴장응력 사이의 역학적 메커니즘이 검증되었다. 이를 위하여, 탄성파 속도로부터 텐던의 시스템 강성을 추정할 수 있는 시스템인식 이론이 적용 되었다. 추정 결과는 기존 문헌의 연구결과와 비교 검토되었다.