• Title/Summary/Keyword: Longitudinal Vibration Mode

Search Result 107, Processing Time 0.022 seconds

An efficient vibration control strategy for reliability enhancement of HAWT blade

  • Sajeer, M. Mohamed;Chakraborty, Arunasis;Das, Sourav
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.703-720
    • /
    • 2020
  • This paper investigates the safety of the wind turbine blade against excessive deformation. For this purpose, the performance of the blade in the along-wind direction is improved by longitudinal stiffener made of shape memory alloy. The rationale behind the selection of this smart material is due to its ability to offer excellent thermo-mechanical behaviour at low strain. Here, Liang-Roger model is adopted for vibration control, and the super-elastic effects are utilised for blade stiffening. Turbulent wind fields are generated at the hub height using TurbSim and the corresponding loads are evaluated using blade element momentum theory. An efficient switching algorithm is developed along with performance curves that enable the designer to select an optimal mode of heating depending upon the operational scenario. Numerical results presented in this paper clearly demonstrate the performance envelope of the proposed stiffener and its influence on the reliability of the blade.

System Mode and Sensitivity Analysis for Brake Judder Reduction (브레이크 저더 개선을 위한 시스템 모드분석 및 민감도해석)

  • Hwang In-Jin;Park Gyung-Jin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.6
    • /
    • pp.142-153
    • /
    • 2005
  • The brake judder is a phenomenon that the steering wheel is abnormally vibrating when the car is braked at a high speed. It is classified by the cold and the hot judder. The former is generated due to the initial uneven disk surface and the latter is resulted from the uneven heat spots on disc surface by repeatedly braking. There are two ways to reduce the judder. One is to control vibration by modification of the disk shapes and pad ingredients. The other is to improve modal characteristics of the suspension system. The latter approach is used in this research. In this paper, the real vehicle test and computer simulation are considered to systematically understand the judder phenomenon of the vehicle. The Macpherson strut suspension is employed. Especially, the judder sensitivity is calculated based on design sensitivity analysis. A bush stiffness was reworked and braking test was done to verify the sensitivity result. The judder reduction by the mode control was verified.

Fabrication of RFID TAG Micro Pattern Using Ultrasonic Convergency Vibration (초음파 융합진동을 이용한 미세패턴성형 기술 연구)

  • Lee, Bong-Gu
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.1
    • /
    • pp.175-180
    • /
    • 2020
  • In this study, we developed a micropattern technology in the shape of RFID TAG antenna using ultrasonic micropattern manufacturing system developed to enable micropattern technology. The ultrasonic tool horn in longitudinal vibration mode was installed in the micropattern manufacturing system to develop the ultrasonic press technology for the micropattern antenna shape of the RFID TAG antenna shape on the insulating sheet surface. The ultrasonic shaping technology was manufactured by applying the resonance design technique to a 60kHz tool horn, and by using the micropattern manufacturing system, the coil wire having a thickness of 25㎛ can be ultrasonically press-molded on an insulating sheet of 200㎛ or less. In ultrasonic press technology, the antenna shape having a minimum line width of 150㎛ could be molded without disconnection, peeling, or twisting of the coil wire.

System identification of the suspension tower of Runyang Bridge based on ambient vibration tests

  • Li, Zhijun;Feng, Dongming;Feng, Maria Q.;Xu, Xiuli
    • Smart Structures and Systems
    • /
    • v.19 no.5
    • /
    • pp.523-538
    • /
    • 2017
  • A series of field vibration tests are conducted on the Runyang Suspension Bridge during both the construction and operational stages. The purpose of this study is devoted to the analysis of the dynamic characteristics of the suspension tower. After the tower was erected, an array of accelerometers was deployed to study the evolution of its modal parameters during the construction process. Dynamic tests were first performed under the freestanding tower condition and then under the tower-cable condition after the superstructure was installed. Based on the identified modal parameters, the effect of the pile-soil-structure interaction on dynamic characteristics of the suspension tower is investigated. Moreover, the stiffness of the pile foundation is successfully identified using a probabilistic finite model updating method. Furthermore, challenges of identifying the dynamic properties of the tower from the coupled responses of the tower-cable system are discussed in detail. It's found that compared with the identified results from the freestanding tower, the longitudinal and torsional natural frequencies of the tower in the tower-cable system have changed significantly, while the lateral mode frequencies change slightly. The identified modal results from measurements by the structural health monitoring system further confirmed that the vibrations of the bridge subsystems (i.e., the tower, the suspended deck and the main cable) are strongly coupled with one another.

Free vibration characteristics of horizontally curved composite plate girder bridges

  • Wong, M.Y.;Shanmugam, N.E.;Osman, S.A.
    • Steel and Composite Structures
    • /
    • v.10 no.4
    • /
    • pp.297-315
    • /
    • 2010
  • This paper is concerned with free vibration characteristics and natural frequency of horizontally curved composite plate girder bridges. Three-dimensional finite element models are developed for the girders using the software package LUSAS and analyses carried out on the models. The validity of the finite element models is first established through comparison with the corresponding results published by other researchers. Studies are then carried out to investigate the effects of total number of girders, number of cross-frames and curvature on the free vibration response of horizontally curved composite plate girder bridges. The results confirm the fact that bending modes are always coupled with torsional modes for horizontally curved bridge girder systems. The results show that the first bending mode is influenced by composite action between the concrete deck and steel beam at low subtended angle but, on the girders with larger subtended angle at the centre of curvature such influence is non-existence. The increase in the number of girders results in higher natural frequency but at a decreasing rate. The in-plane modes viz. longitudinal and arching modes are significantly influenced by composite action and number of girders. If no composite action is taken into account the number of girders has no significant effect for the in-plane modes.

Thermal stress effects on microtubules based on orthotropic model: Vibrational analysis

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Fareed, Khurram;Safeer, Muhammad;Khedher, Khaled Mohamed;Ahmad, Manzoor;Naeem, M. Nawaz;Qazaq, Amjad;Qahtani, Abdelaziz Al;Mahmoud, S.R.;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.11 no.3
    • /
    • pp.255-260
    • /
    • 2021
  • Vibration of protein microtubules is investigated based upon Orthotropic Elastic Shell Model, considering the effect of thermal stresses. The complete analytical formulas of thermal vibration for microtubules are obtained. It is observed that the effects of thermal stresses on the vibrational frequency mode are more significant when the longitudinal and circumferential wave vectors are large enough. But when the length of wave vector reduces to 5 nm, these effects have no significant effects. The present results well agree with the lattice vibrations of microtubules. Moreover, the results show that the effects of thermal stresses due to small change in temperature are not so significant but with the increase in temperature its effects are obvious.

A Study of Ultrasonic Rotary Motor Using the Langevin Type Vibrator (란쥬반형 진동자를 이용한 초음파 회전 모터에 관한 연구)

  • Lee, Jae-Hyung;Park, Tae-Gone;Kwon, Oh-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.223-227
    • /
    • 2003
  • In this study, ultrasonic rotary motors using a bolted langevin type ultrasonic vibrator were designed and fabricated. The stator vibrator has a longitudinal transducer section composed of two metal blocks and two piezoelectric ceramic elements (thickness-polarized) and a mode conversion metal block section called a torsion coupler. And, three kinds of motors were studied by finite element analysis and experiments. So, as material of torsion coupler which generate mode conversion of vibration copper, brass, and phosphor bronze were used. As a result, speed and torque were changed in proportion to the electrical input Voltage, but it was saturated in high voltage. And bad efficiency which was different from a expectation was measured in this motors. So, various problems should be improved for practical use. Finally, The motor which has 1 [cm] diameter was fabricated to present a possibility of miniaturization of this type motors.

  • PDF

Driving Characteristic of Ultrasonic Linear Motor with V-type (V-형 선형 초음파 모터의 구동 특성)

  • Jeong, Seong-Su;Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.274-275
    • /
    • 2006
  • A linear ultrasonic motor was designed by a combination of the longitudinal and bending mode. Linear ultrasonic motors are based on an elliptical motion on the surface of elastic body, such as bar or plates. The corresponding eigen-mode of one resonance frequency can be excited twice at the same time with a phase shift of 90 degrees in space and time. That is excite symmetric and anti-symmetric modes. Then it determines the thrust and speed of the motor. Linear ultrasonic motors are investigated experimentally in according to be fabricated a general classification to motor structure and material characteristic. There was the first to simulate as use of finite element analysis ANSYS 9.0. The AL-T2W8-ARM14-LEG18-ANGLE80 motor has a maxim efficiency 17 [%] under the speed 0.14 [m/s], thrust 345 [gf] and preload 280 [gf], operating frequency is 57.6 [kHz].

  • PDF

Comparison of Energy Harvesting Characteristics in Trapezoidal Piezoelectric Cantilever Generator with PZT Laminate Film by Longitudinal (3-3) Mode and Transverse (3-1) Mode (PZT 라미네이트 Trapezoidal Piezoelectric Cantilever Generator의 모드(3-1, 3-3)별 에너지 하베스팅 특성 비교)

  • Lee, Min-seon;Kim, Chang-il;Yun, Ji-sun;Park, Woon-ik;Hong, Youn-woo;Paik, Jong-hoo;Cho, Jeong-ho;Park, Yong-ho;Jeong, Young-hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.12
    • /
    • pp.768-775
    • /
    • 2017
  • Energy harvesting characteristics of trapezoidal piezoelectric cantilever generator, which has a lead zirconate titanate (PZT) laminate film, were compared by longitudinal (3-3) and transverse (3-1) modes. The PZT laminate film, fabricated by a conventional tape casting process, was cofired with Ag electrode at $850^{\circ}C$ for 2 h. A multi-layered Ag electrode by a planar pattern and an interdigitated pattern was applied to the PZT laminate to implement the 3-3 and 3-1 modes, respectively. The energy harvesting performance of the 3-3 mode trapezoidal piezoelectric cantilever generator was better than that of the 3-1 mode. An extremely high output power density of $26.7mW/cm^3$ for the 3-3 mode was obtained at a resonant frequency of 145 Hz under a load resistance of $50{\Omega}$ and acceleration of 1.3 G, which is ~3-times higher than that for the 3-1 mode. Therefore, the 3-3 mode is considered significantly efficient for application to high-performance piezoelectric cantilever generator.

Study on Analysis of Evanescent Waves Generating the Strong End Axial Vibration of a Finite Cylindrical Shell (유한 원통셸의 큰 끝단 종진동을 발생시키는 감쇠파에 대한 분석 연구)

  • Kil, Hyun-Gwon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.361-367
    • /
    • 2011
  • Propagating waves (flexural, longitudinal and shear waves) travelling with constant amplitudes and evanescent waves decaying exponentially are generated on a cylindrical shell. Evanescent waves are generally generated in the vicinity of an vibration excitation point and near ends of the shell. But the evanescent waves can generates strong axial vibration at the ends of the cylindrical shell. The strong end axial vibration due to those evanescent waves has been observed in an author's previous paper dealing with measurements of the in-plane axial vibration of a finite cylindrical shell. In this paper the strong end axial vibration due to the evanescent waves has been theoretically analyzed. In order to analyze the vibration of the cylindrical shell, wave propagation approach has been implemented. Comparison between theoretical and experimental results for the axial vibration of the shell showed that the strong evanescent wave can be generated due to mode conversion (conversion from flexural wave to evanescent wave) at the ends of cylindrical shell. It also showed that the evanescent wave can generate the strong axial vibration near the ends of the cylindrical shell and that it can have effect even on 1/3 of the total length of the shell.