• Title/Summary/Keyword: Longitudinal Strain

Search Result 392, Processing Time 0.033 seconds

Constitutive Modeling of Confined Concrete under Concentric Loading

  • Lee, Cha-Don;Park, Ki-Bong;Cha, Jun-Sil
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.69-78
    • /
    • 2001
  • The inelastic behavior of a reinforced concrete columns is influenced by a number of factors : 1) level of axial load, 2) tie spacing, 3) volumetric ratio of lateral steel, 4) concrete strength, 5) distribution of longitudinal steel, 6) strength of lateral steel, 7) cover thickness, 8) configuration of lateral steel, 9) strain gradient, 10) strain rate, 11) the effectively confined concrete core area, and 12) amount of longitudinal steel. A new constitutive model of a confined concrete is suggested in order to investigate the nonlinear behavior of the reinforced concrete columns under concentric loading. The developed constitutive model for the confined concrete takes into account the effects of effectively confined area as well as the horizontal and longitudinal distributions of the confining pressures. None of the existing models incorporated these two main effects at the same time. A total of different six constitutive models for the behavior of the confined concrete under concentric compression were compared with the sixty-one test results reported by different researchers. The superiority of the developed model in its accuracy is demonstrated by evaluating the error function, which compares the weighted averages for the sum of squared relative differences in peak compressive strength and corresponding strain, stress at strain equal to 0.015, and total area under stress-strain curve up to strain equal to 0.015.

  • PDF

A Study on Maximum Tensile Strain of Vehicle Speeds in Flexible Pavement (차량속도에 따른 연성 포장의 최대인장변형률에 관한 연구)

  • Jo, Myoung-Hwan;Kim, Nak-Seok;Choi, Ho-Geun;Seo, Young-Guk
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.329-332
    • /
    • 2008
  • This study presents a viscoelastic characterization of flexible pavement subjected to moving loads. A series of field tests have been conducted on three pavement sections (A2, A5, and A8) at the Korea Expressway Corporation (KEC) test road. The effect of vehicle speed on the responses of each test section was investigated at three speeds: 25km/hr, 50km/hr, and 80km/hr. During the test, both longitudinal and lateral strains were measured at the bottom of asphalt layers and in-situ measurements were compared with the results of finite element (FE) analyses. A commercial FE package was used to model each test section and a step loading approximation has been adopted to simulate the effect a moving vehicle. Field responses reveal the strain anisotropy (i.e., discrepancy between longitudinal and lateral strains) and the amplitude of strain normally decreases as the vehicle speed increases. In most cases, lateral strain was smaller than the longitudinal strain, and strain reduction was more significant in lateral direction.

  • PDF

Non-linear longitudinal fracture in a functionally graded beam

  • Rizov, Victor I.
    • Coupled systems mechanics
    • /
    • v.7 no.4
    • /
    • pp.441-453
    • /
    • 2018
  • Longitudinal fracture in a functionally graded beam configuration was studied analytically with taking into account the non-linear behavior of the material. A cantilever beam with two longitudinal cracks located symmetrically with respect to the centroid was analyzed. The material was functionally graded along the beam width as well as along the beam length. The fracture was studied in terms of the strain energy release rate. The influence of material gradient, crack location along the beam width, crack length and material non-linearity on the fracture behavior was investigated. It was shown that the analytical solution derived is very useful for parametric analyses of the non-linear longitudinal fracture behavior. It was found that by using appropriate material gradients in width and length directions of the beam, the strain energy release rate can be reduced significantly. Thus, the results obtained in the present paper may be applied for optimization of functionally graded beam structure with respect to the longitudinal fracture performance.

The Fabrication of Chromium Thin-Film Strain Gauges (크롬 박막 스트레인 게이지의 제작)

  • 양지영;정현석;장영석;정귀상
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.342-345
    • /
    • 1996
  • This paper presents the basic characteristics of thin-film strain gauges using Cr thin-films, in which the Cr thin-films were deposited by DC magnetron sputtering. The optimized deposition conditions as a strain gauge were the input DC power was 7 W/$\textrm{cm}^2$ and the Ar vacuuming pressure was 9 mTorr. The characteristics of fabricated Cr thin-film strain gauge were the gauge factor(GF) was 5.86 in longitudinal strain and -2.04 in transverse one, the TCR was under 400 ppm/$^{\circ}C$ and the TCS was around 0 ppm/$^{\circ}C$.

  • PDF

Elastic wave phenomenon of nanobeams including thickness stretching effect

  • Eyvazian, Arameh;Zhang, Chunwei;Musharavati, Farayi;Khan, Afrasyab;Mohamed, Abdeliazim Mustafa
    • Advances in nano research
    • /
    • v.10 no.3
    • /
    • pp.271-280
    • /
    • 2021
  • The present work deals with an investigation on longitudinal wave propagation in nanobeams made of graphene sheets, for the first time. The nanobeam is modelled via a higher-order shear deformation theory accounts for both higher-order and thickness stretching terms. The general nonlocal strain gradient theory including nonlocality and strain gradient characteristics of size-dependency in order is used to examine the small-scale effects. This model has three-small scale coefficients in which two of them are for nonlocality and one of them applied for gradient effects. Hamilton supposition is applied to obtain the governing motion equation which is solved using a harmonic solution procedure. It is indicated that the longitudinal wave characteristics of the nanobeams are significantly influenced by the nonlocal parameters and strain gradient parameter. It is shown that higher nonlocal parameter is more efficient than lower nonlocal parameter to change longitudinal phase velocities, while the strain gradient parameter is the determining factor for their efficiency on the results.

Design of Flower Pattern in Roll Forming Process for Ultra High Strength Bumper Beam (초고강도 범퍼 빔의 롤 포밍 공정을 위한 플라워 패턴 설계)

  • Cha, T.W.;Kim, J.H.;Kim, G.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.5
    • /
    • pp.319-324
    • /
    • 2016
  • Recently, the roll forming process is one of the most widely used processes for manufacturing automotive part. In this study, flower patterns of roll forming process were designed to manufacture an ultra high strength bumper beam using the finite element analysis. Three types of flower patterns such as the basic type, the rotation type and the split type were designed based on the constant arc length forming method using the design software, UBECO Profil. Finite element analysis was performed to evaluate the suitability of designed flower patterns in terms of the longitudinal strain and the bow defect. The analytical results show that the split type represents more uniform longitudinal strain distributions and a good dimensional accuracy than other types of flower patterns.

Formulations of Job Strain and Psychological Distress: A Four-year Longitudinal Study in Japan

  • Mayumi Saiki;Timothy A. Matthews;Norito Kawakami;Wendie Robbins;Jian Li
    • Safety and Health at Work
    • /
    • v.15 no.1
    • /
    • pp.59-65
    • /
    • 2024
  • Background: Different job strain formulations based on the Job Demand-Control model have been developed. This study evaluated longitudinal associations between job strain and psychological distress and whether associations were influenced by six formulations of job strain, including quadrant (original and simplified), subtraction, quotient, logarithm quotient, and quartile based on quotient, in randomly selected Japanese workers. Methods: Data were from waves I and II of the Survey of Midlife in Japan (MIDJA), with a 4-year followup period. The study sample consisted of 412 participants working at baseline and had complete data on variables of interest. Associations between job strain at baseline and psychological distress at follow-up were assessed via multivariable linear regression, and results were expressed as β coefficients and 95% confidence intervals including R2 and Akaike information criterion (AIC) evaluation. Results: Crude models revealed that job strain formulations explained 6.93-10.30% of variance. The AIC ranged from 1475.87 to 1489.12. After accounting for sociodemographic and behavioral factors and psychological distress at baseline, fully-adjusted models indicated significant associations between all job strain formulations at baseline and psychological distress at follow-up: original quadrant (β: 1.16, 95% CI: 0.12, 2.21), simplified quadrant (β: 1.01, 95% CI: 0.18, 1.85), subtraction (β: 0.39, 95% CI: 0.09, 0.70), quotient (β: 0.37, 95% CI: 0.08, 0.67), logarithm quotient (β: 0.42, 95% CI: 0.12, 0.72), and quartile based on quotient (β: 1.22, 95% CI: 0.36, 2.08). Conclusion: Six job strain formulations showed robust predictive power regarding psychological distress over 4 years among Japanese workers.

Compressive performances of concrete filled Square CFRP-Steel Tubes (S-CFRP-CFST)

  • Wang, Qingli;Shao, Yongbo
    • Steel and Composite Structures
    • /
    • v.16 no.5
    • /
    • pp.455-480
    • /
    • 2014
  • Sixteen concrete filled square CFRP-steel tubular (S-CFRP-CFST) stub columns under axial compression were experimentally investigated. The experimental results showed that the failure mode of the specimens is strength loss of the materials, and the confined concrete has good plasticity due to confinement of the CFRP-steel composite tube. The steel tube and CFRP can work concurrently. The load versus longitudinal strain curves of the specimens can be divided into 3 stages, i.e., elastic stage, elasto-plastic stage and softening stage. Analysis based on finite element method showed that the longitudinal stress of the steel tube keeps almost constant along axial direction, and the transverse stress at the corner of the concrete is the maximum. The confinement effect of the outer tube to the concrete is mainly focused on the corner. The confinements along the side of the cross-section and the height of the specimen are both non-uniform. The adhesive strength has little effect both on the load versus longitudinal strain curves and on the confinement force versus longitudinal strain curves. With the increasing of the initial stress in the steel tube, the load carrying capacity, the stiffness and the peak value of the average confinement force are all reduced. Equation for calculating the load carrying capacity of the composite stub columns is presented, and the estimated results agree well with the experimental results.

Analysis of effects of the roll forming process parameters of side sill (롤 포밍용 차체 부품 공정 변수 영향도 해석)

  • Kim, D.K.;Sohn, S.M.;Lee, K.H.;Lee, M.Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.10a
    • /
    • pp.310-313
    • /
    • 2007
  • In roll forming process, a sheet metal is continuously progressively formed into a product with required cross-section and longitudinal shape, such as a circular tube with required diameter, wall-thickness and straightness, by passing through a series of forming rolls in arranged in tandem. In this process, each pair of forming rolls installed in a forming machine play a particular role in making up the required cross-section and longitudinal shape of the product. In recent years, that process is often applied to the bumper rail in the automotive industries. In this study, a optimal roll flower model and proper roll-pass sequence can be suggested by analyzing courcenter strain and longitudinal strain according to the roll-pass with FEM simulation. And also effects of the process parameters on the final shape formed by roll forming defects a evaluated.

  • PDF

Propagation characteristics of longitudinal wave, shear wave and bending wave in porous circular nanoplates

  • Shan, Wubin;Deng, Zulu;Zhong, Hao;Mo, Hu;Han, Ziqiang;Yang, Zhi;Xiang, Chengyu;Li, Shuzhou;Liu, Peng
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.551-559
    • /
    • 2020
  • On the basis of nonlocal strain gradient theory, considering the material properties of porous FGM changing with thickness and the influence of moment of inertia, the wave equation of FG nano circular plate is derived by using the first-order shear deformation plate theory, by introducing dimensionless parameters, we transform the equations into dimensionless wave equations, and the dispersion relations of bending wave, shear wave and longitudinal wave are obtained by Laplace and Hankel integral transformation method. The influence of nonlocal parameter, porosity volume fraction, strain gradient parameters and power law index on the propagation characteristics of bending wave, shear wave and longitudinal wave in FG nano circular plate.