• Title/Summary/Keyword: Longitudinal Strain

Search Result 410, Processing Time 0.027 seconds

On the Effect of Plate Curvature on Welding Deformation (용접변형에의 곡률의 영향에 관한 연구)

  • Lee, Joo-Sung;Lee, Jin-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.67-73
    • /
    • 2010
  • A simplified finite element analysis has been used to predict the weld-induced deformation to bead-on-plate welding of steel plates having curvatures in the welding direction. In this study, the equivalent loading method based on inherent strain was used to investigate the effect of longitudinal curvature on the weld-induced deformation of curved plates. Equivalent loads were derived from the inherent strain distribution around the weld line, and the loads were used for linear finite element analyses. These kinds of numerical simulations can, of course, be performed by using the rigorous thermalelastic-plastic analysis method. This approach is not, however, practical for use in weld-induced deformation analysis of large and complex structures, such as ship structures, in view of computing time and cost. The present equivalent load approach has been applied to several plate models having curvatures in the welding direction, and the results are compared with those obtained by thermal-elastic-plastic analysis and also with those obtained by the other simplified method found in reference. As far as the present results are concerned, the weld-induced deformation of curved plates can be accurately predicted by the method presented in this paper.

Dynamic Magneto-mechanical Behavior of an Iron-nickel-based Ferromagnetic Alloy with Constant Elasticity

  • Bian, Leixiang;Wen, Yumei;Li, Ping;Gao, Qiuling;Liu, Xianxue
    • Journal of Magnetics
    • /
    • v.14 no.2
    • /
    • pp.66-70
    • /
    • 2009
  • The dynamic magneto-mechanical behaviors in a type of iron-nickel-based ferromagnetic alloy with constant elasticity were investigated as a function of both the DC bias magnetic field ($H_{dc}$) and the frequency. The rectangular plate-like samples were excited to vibrate at a half-wavelength, longitudinal resonance by an AC magnetic field superimposed with various $H_{dc}$. The experimental results found that the strain coefficient at resonance reached 819.34 nm/A and the effective mechanical quality factor ($Q_m$) was greater than 2000. The ratio of the maximum variation of the Young's modulus over $H_{dc}$ to the value of the Young's modulus at a zero bias field was only ${\sim}0.83%o$ because of the so-called constant elasticity. The resonant strain coefficients and $Q_m$ are strongly dependent on $H_{dc}$, which indicates a promising potential for use in DC and quasistatic magnetic field sensing.

Plate Flattening Analysis in Line Heating Process using Bending Strains (굽힘 변형도를 이용한 선상가열 과정의 곡 펴짐 현상에 관한 연구)

  • Park, Jung-Seo;Kim, Jung;Shin, Jong-Gye;Hyun, Chung-Min;Doh, Young-Chil;Ko, Kwang-Hee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.4
    • /
    • pp.417-425
    • /
    • 2008
  • In the line heating process, only angular distortion whose direction is perpendicular to that of a heating path is expected. However, it is observed that a deformation is induced in the direction of the heating line. Because of this, during forming a saddle type plate we experience unfavorable deformations in the unintended direction. In this paper we discuss the unwanted distortion in the manufacturing process by analyzing intermediate plates of saddle type during fabrication. For this analysis we consider the longitudinal and transversal directions separately and use the bending strain for the analysis.

Field Investigation of Composite Behavior in High-speed Railway PSC Box Girder Bridge (고속전철 PSC 박스거더교 합성거동의 현장 계측에 관한 연구)

  • 김영진;김병석;강재윤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.995-1000
    • /
    • 2000
  • Segmentally erected prestressed concrete box girder bridges have been widely used in Korean high speed railway. Segmental erection has been accomplished along the longitudinal direction and across the depth of cross section. The cross section is similar to a composite cross section, composed of old and new segments. Because these segments have different time-dependent creep and shrinkage properties, a stress redistribution takes place during the construction period. It is the main objective in this research to investigate this behavior. An actual bridge was instrumented with 96 vibrating wire embedded type strain gauges, 6 electronic type steel strain gauges, and 75 thermocouples. Two span continuous high speed railway bridge was selected. Two points of importance, such as the midpoint of the first span and the point of interior support, along the span of the girder were chosen to monitor the time dependent behaviors for an extended period of time. The data collection was starting just after concrete girder were cast and is still going on. According to the measured results, the strain distributions across the depth of the section at midspan and interior support were not continuous and the important redistribution of stresses takes place. Thus, rational design of prestressed concrete composite box girder bridges need.

Cyclic performance of RC beam-column joints enhanced with superelastic SMA rebars

  • Ghasemitabar, Amirhosein;Rahmdel, Javad Mokari;Shafei, Erfan
    • Computers and Concrete
    • /
    • v.25 no.4
    • /
    • pp.293-302
    • /
    • 2020
  • Connections play a significant role in strength of structures against earthquake-induced loads. According to the post-seismic reports, connection failure is a cause of overall failure in reinforced concrete (RC) structures. Connection failure results in a sudden increase in inter-story drift, followed by early and progressive failure across the entire structure. This article investigated the cyclic performance and behavioral improvement of shape-memory alloy-based connections (SMA-based connections). The novelty of the present work is focused on the effect of shape memory alloy bars is damage reduction, strain recoverability, and cracking distribution of the stated material in RC moment frames under seismic loads using 3D nonlinear static analyses. The present numerical study was verified using two experimental connections. Then, the performance of connections was studied using 14 models with different reinforcement details on a scale of 3:4. The response parameters under study included moment-rotation, secant stiffness, energy dissipation, strain of bar, and moment-curvature of the connection. The connections were simulated using LS-DYNA environment. The models with longitudinal SMA-based bars, as the main bars, could eliminate residual plastic rotations and thus reduce the demand for post-earthquake structural repairs. The flag-shaped stress-strain curve of SMA-based materials resulted in a very slight residual drift in such connections.

Echocardiographic Assessment of Papillary Muscle Size and Function in Normal Beagle Dogs

  • Kim, Mijin;Choi, Sooyoung;Choi, Hojung;Lee, Youngwon;Lee, Kija
    • Journal of Veterinary Clinics
    • /
    • v.36 no.3
    • /
    • pp.155-158
    • /
    • 2019
  • Morphologic changes or functional impairments of the papillary muscle (PM) can influence mitral valve competence. The purpose of this study was to investigate PM size and contractile function using two-dimensional and color tissue Doppler echocardiography in normal dogs. 35 unsedated Beagle dogs without cardiovascular disease were examined. The vertical (VD) and horizontal diameter (HD) of the posterior and anterior PM was measured at end-diastole, and compared with the thickness of the left ventricular posterior wall (LVPWd). Longitudinal systolic movement of the PM was quantified as myocardial velocity and strain using tissue Doppler. The VD, HD, and ratios (VD/LVPWd, HD/LVPWd, VD/HD) were significantly greater in the posterior than anterior PM (P < 0.001). The VD and HD of posterior PM and the HD of anterior PM were significantly correlated with LVPWd (r = 0.47, 0.44, and 0.42, respectively). Body weight was significantly correlated with VD of posterior PM (r = 0.37). The peak systolic tissue velocity of the PM was $4.93{\pm}1.25cm/sec$ and peak strain was $-30.83{\pm}11.92%$. PM size and systolic function can be quantitatively assessed using two-dimensional and tissue Doppler. The establishment of these objective PM measurements may be useful to evaluate morphological and functional abnormalities of the canine PM.

Debonding strain for steel-concrete composite slabs with trapezoidal metal deck

  • Claudio Bernuzzi;Marco A. Pisani;Marco Simoncelli
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.19-30
    • /
    • 2023
  • Steel-concrete composite slabs represent a very efficient floor solution combining the key performance of two different materials: the steel and the concrete. Composite slab response is governed by the degree of the interaction between these two materials, mainly depending by chemical and mechanical bond. The latter is characterized by a limited degree of confinement if compared with the one of the rebars in reinforced concrete members while the former is remarkably influenced by the type of concrete and the roughness of the profiled surface, frequently lubricated during the cold-forming manufacturing processes. Indeed, owing to the impossibility to guarantee a full interaction between the two materials, a key parameter governing slab design is represented by the horizontal shear-bond strength, which should be always experimentally estimated. According to EC4, the design of the slab bending resistance, is based on the simplified assumption that the decking sheet is totally yielded, i.e., always in plastic range, despite experimental and numerical researches demonstrate that a large part of the steel deck resists in elastic range when longitudinal shear collapse is achieved. In the paper, the limit strain for composite slab, which corresponds to the slip, i.e., the debonding between the two materials, has been appraised by means of a refined numerical method used for the simulation of experimental results obtained on 8 different composite slab types. In total, 71 specimens have been considered, differing for the properties of the materials, cross-section of the trapezoidal profiled metal sheets and specimen lengths.

Mechanical behavior and numerical modelling of steel fiber reinforced concrete under triaxial compression

  • Bu Jingwu;Xu Huiying;Wu Xinyu;Chen Xudong;Xu Bo
    • Computers and Concrete
    • /
    • v.34 no.2
    • /
    • pp.137-149
    • /
    • 2024
  • In order to study the triaxial mechanical behavior of steel fiber reinforced high performance concrete (SFRHPC), the standard triaxial compression tests with four different confining pressures are performed on the cylindrical specimens. Three different steel fiber volumes (0, 1% and 2%) are added in the specimens with diameter of 50 mm and height of 100 mm. Test results show that the triaxial compressive strength and peak strain increase with the increasing of fiber content at the same confining pressure. At the same steel fiber content, the triaxial compressive strength and peak strain increases with the confining pressure. The compressive strength growth rate declines as the confining pressure and steel fiber content increases. Longitudinal cracks are dominant in specimens with or without steel fiber under uniaxial compression loading. While with the confining pressure increases, diagonal crack due to shear is obvious. The Mohr-Coulomb criterion is illustrated can be used to describe the failure behavior, and the cohesive force increases as steel fiber content increases. Finally, the numerical model is built by using the PFC3D software. In the numerical model a index is introduced to reflect the effect of steel fiber content on the triaxial compressive behavior. The simulating stress-strain curve and failure mode of SFRHPC are agree well with the experimental results.

Multi-potential capacity for reinforced concrete members under pure torsion

  • Ju, Hyunjin;Han, Sun-Jin;Kim, Kang Su;Strauss, Alfred;Wu, Wei
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.401-414
    • /
    • 2020
  • Unlike the existing truss models for shear and torsion analysis, in this study, the torsional capacities of reinforced concrete (RC) members were estimated by introducing multi-potential capacity criteria that considered the aggregate interlock, concrete crushing, and spalling of concrete cover. The smeared truss model based on the fixed-angle theory was utilized to obtain the torsional behavior of reinforced concrete member, and the multi-potential capacity criteria were then applied to draw the capacity of the member. In addition, to avoid any iterative calculation in the existing torsional behavior model, a simple strength model was suggested that considers key variables, such as the effective thickness of torsional member, principal stress angle, and strain effect that reduces the resistance of concrete due to large longitudinal tensile strain. The proposed multi-potential capacity concept and the simple strength model were verified by comparing with test results collected from the literature. The study found that the multi-potential capacity could estimate in a rational manner not only the torsional strength but also the failure mode of RC members subjected to torsional moment, by reflecting the reinforcing index in both transverse and longitudinal directions, as well as the sectional and material properties of RC members.

A Numerical Study for Deformation Characteristics of the Wearing Surface on a Steel Plate Deck under Wheel Loads (윤하중을 받는 강바닥판 교면포장의 변형특성에 대한 수치해석적 연구)

  • Kim, Hae-Na-Rae;Ock, Chang-Kwon;Kim, Moon-Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.439-447
    • /
    • 2011
  • Longitudinal cracks due to traffic truck loadings that are caused by local deformations of steel orthotropic bridge decks are sometimes observed in the wearing surface. So, underlying causes of the longitudinal pavement crack induced by structural behaviors of steel decks are investigated in this study. For this purpose, The rational finite element model of the steel deck and the pavement having the box girder is developed and a parametric study is performed by varying thickness or elastic modulus ratios of both the steel deck plate and the pavement. As a result, a large tensile strain above the webs of the u-rib and the box girder, which becomes the main cause of the cracks of the pavement, is detected from variation of the normal strain component of the wearing surface in the transverse direction.