• Title/Summary/Keyword: Longitudinal Frame

Search Result 102, Processing Time 0.034 seconds

Exploring Rape Reports in Newspapers - A Longitudinal Analysis of Four Korean News Dailies between 1990 and 2007 (한국 신문에 나타난 강간보도의 통시적 분석 - 강간통념과 양가적 성차별주의를 중심으로)

  • Lee, Jung-Gyo;Seo, Young-Nam;Choi, Su-Jin
    • Korean journal of communication and information
    • /
    • v.45
    • /
    • pp.425-462
    • /
    • 2009
  • The present study delves into how rape reports are framed in popular Korean newspapers over time. Specifically, the primary purpose of this study was to examine how rape myths and ambivalent sexism and were presented in three Korean newspapers. In order to assess longitudinal trends of rape reports, the sample for the content analysis was drawn from 1990 to 2007. Four newspapers, Chosun-Ilbo, Dongah-Ilbo, Jungang-Ilbo and Hankyoreh, which have been the most popular in terms of circulation and ad revenues, were selected for this longitudinal content analysis. Using random stratified sampling and screening process, A total of 2160 articles were content analyzed for the main study. The results revealed that rape reports appearing in Korean newspapers were overwhelmingly dominated by episodic frame rather than thematic frame. Particularly, It was found that Korean rape reports generally have attributed the cause of rape crimes to the victims. Implications for results were discussed in terms of rape myth and ambivalent sexism theories.

  • PDF

A Study on the Ride Improvement of an Escalator Using Flexible Body Dynamics Model (유연체 동력학모델을 이용한 에스컬레이터의 승차감 개선에 관한 연구)

  • 박찬종;권이석;박태원
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.6
    • /
    • pp.135-142
    • /
    • 2000
  • In this paper, 3-dimensional numerical model of an escalator is developed to study the vibration characteristics. This proposed model is able to consider the elastic deformation of the frame during transient dynamic analysis. Deformation modes which are used to calculate the elastic deformation are selected from the FE model analysis. Because low frequency vibration is very important to the ride quality of fore/aft direction, low frequency deformation modes of the frame below 20Hz are considered. To show validity of this dynamics model, longitudinal acceleration of a step is compared with test data in frequency domain. Then robust design technique is applied to determine important design factors and improve ride quality with small number of experiments.

  • PDF

Buckling analysis of complex structures with refined model built of frame and shell finite elements

  • Hajdo, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.1
    • /
    • pp.29-46
    • /
    • 2020
  • In this paper we deal with stability problems of any complex structure that can be modeled by beam and shell finite elements. We use for illustration the steel plate girders, which are used in bridge construction, and in industrial halls or building construction. Long spans, slender cross sections exposed to heavy loads, are all critical design points engineers must take into account. Knowing the critical load that will cause lateral torsional buckling of the girder, or load that can lead to web buckling, as an important scenario to consider in a design process.Many of such problem, including lateral torsional buckling with influence of lateral supports and their spacing on critical load can be solved by the proposed method. An illustrative study of web buckling also includes effects of position and spacing of transverse and longitudinal web stiffeners, where stiffeners can be modelled optionally using shell or frame elements.

3D finite element modelling of composite connection of RCS frame subjected to cyclic loading

  • Asl, Mohammad Hossein Habashizadeh;Chenaglou, Mohammad Reza;Abedi, Karim;Afshin, Hassan
    • Steel and Composite Structures
    • /
    • v.15 no.3
    • /
    • pp.281-298
    • /
    • 2013
  • Composite special moment frame is one of the systems that are utilized in areas with low to high seismicity to deal with earthquake forces. Composite moment frames are composed of reinforced concrete columns (RC) and steel beams (S); therefore, the connection region is a combination of steel and concrete materials. In current study, a three dimensional finite element model of composite connections is developed. These connections are used in special composite moment frame, between reinforced concrete columns and steel beams (RCS). Finite element model is discussed as a most reliable and low cost method versus experimental procedures. Based on a tested connection model by Cheng and Chen (2005), the finite element model has been developed under cyclic loading and is verified with experimental results. A good agreement between finite element model and experimental results was observed. The connection configuration contains Face Bearing Plates (FBPs), Steel Band Plates (SBPs) enveloping around the RC column just above and below the steel beam. Longitudinal column bars pass through the connection with square ties around them. The finite element model represented a stable response up to the first cycles equal to 4.0% drift, with moderately pinched hysteresis loops and then showed a significant buckling in upper flange of beam, as the in test model.

Seismic performance of RC frame structures strengthened by HPFRCC walls

  • Yun, Hyun-Do;Hwang, Jin-Ha;Kim, Mee-Yeon;Choi, Seung-Ho;Park, Wan-Shin;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.389-399
    • /
    • 2020
  • An infill wall made of high-performance fiber-reinforced cementitious composites (HPFRCC) was utilized in this study to strengthen the reinforced concrete (RC) frame structures that had not been designed for seismic loads. The seismic performance of the RC frame structures strengthened by the HPFRCC infill walls was investigated through the experimental tests, and the test results showed that they have improved strength and deformation capabilities compared to that strengthened by the RC infill wall. A simple numerical modeling method, called the modified longitudinal and diagonal line element model (LDLEM), was introduced to consider the seismic strengthening effect of the infill walls, in which a section aggregator approach was also utilized to reflect the effect of shear in the column members of the RC frames. The proposed model showed accurate estimations on the strength, stiffness, and failure modes of the test specimens strengthened by the infill walls with and without fibers.

Benchmark Results on the Linearized Equations of Motion of an Uncontrolled Bicycle

  • Schwab A. L.;Meijaard J. P.;Papadopoulos J. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.292-304
    • /
    • 2005
  • In this paper we present the linearized equations of motion for a bicycle as a benchmark. The results obtained by pencil-and-paper and two programs are compared. The bicycle model we consider here consists of four rigid bodies, viz. a rear frame, a front frame being the front fork and handlebar assembly, a rear wheel and a front wheel, which are connected by revolute joints. The contact between the knife-edge wheels and the flat level surface is modelled by holonomic constraints in the normal direction and by non-holonomic constraints in the longitudinal and lateral direction. The rider is rigidly attached to the rear frame with hands free from the handlebar. This system has three degrees of freedom, the roll, the steer, and the forward speed. For the benchmark we consider the linearized equations for small perturbations of the upright steady forward motion. The entries of the matrices of these equations form the basis for comparison. Three diffrent kinds of methods to obtain the results are compared : pencil-and-paper, the numeric multibody dynamics program SPACAR, and the symbolic software system Auto Sim. Because the results of the three methods are the same within the machine round-off error, we assume that the results are correct and can be used as a bicycle dynamics benchmark.

Development of Automated Optimum Design Program Considering the Design Details (세부설계사항을 고려한 자동최적설계 프로그램 개발)

  • Chang, Chun Ho
    • Journal of Korean Society of societal Security
    • /
    • v.4 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • The primary objective of this paper is to develop optimal algorithms of reinforced concrete frame structural systems by the limit state design(CP 1110) and to look into the possibility of detailed design of these structural systems. The structural formulation is derived on the finite element method. The objective of optimization of a reinforced structure for a specified geometry is mainly to determine the optimum cross-sectional dimensions of concrete and the area of the various sizes of the reinforcement required for each member. In addition to the detail s such as the amount of web reinforcement, cutoff points of longitudinal reinforcedments etc. are also considered as design variables. In this study, the method of "Generalized Reduced Gradient, Rounding and with Neighborhood search" and "the Sequential Linear Programming" are employed as an analytical method of nonlinear optimization.

  • PDF

A Study on the Dynamic Instability Characteristics of Latticed Dome Under STEP Excitations (STEP 하중을 받는 래티스 돔 구조물의 동적 구조불안정 특성에 관한 연구)

  • Kim, Seung-Deog;Jang, Je-Pil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.12 no.1
    • /
    • pp.59-68
    • /
    • 2012
  • The space frame structure is one of the large span structural system consisting of longitudinal and latitudinal members. The members are connected in three dimension. A space frame structure has high stiffness with a structure resisting external forces in steric conformation. According to many structural conditions, structural stability problems in the space frame are determined and considered very important. This study seeks to understand the space frame collapse mechanism using the 2-free nodes truss model in order to examine static structural instability characteristics of the latticed dome. According to geometrical shape, the star dome, parallel lamella dome and three way grid dome were selected as models. The models were examined for characteristics of instability under STEP Excitations behavior according to rise-span ratio(${\mu}$) and shape imperfection.

PIV Measurements of Wake behind a KRISO 3600TEU Container Ship Model (PIV를 이용한 KRISO 3600TEU 컨테이너선모형선의 반류 측정 및 해석)

  • Sang-Joon Lee;Min-Seok Koh;Choung-Mook Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.3
    • /
    • pp.48-56
    • /
    • 2002
  • The flow characteristics around KRISO 3600TEU container ship model have been experimentally investigated in a circulating water channel. The instantaneous velocity vectors were measured using 2-frame PIV measurement system. The mean velocity fields and turbulent statistics including turbulent kinetic energy and vorticity were obtained by ensemble-averaging 400 instantaneous velocity fields. The free stream velocity was fixed at 0.6m/s and the corresponding Reynolds number was $9{\times}10^5$. The test sections were divided into two regions, three transverse sections of the wake region(Station -0.5767, -1, -3) and five longitudinal sections of the wake((Z/(B/2)=0, 0.1, 0.2, 0.4, 0.6). In the wake region, large-scale longitudinal vortices of nearly same strength are symmetric with respect to the wake centerline and a relatively weak secondary vortex is formed near the waterline. With going downstream, the strength of longitudinal vortex is decreased and the wake region expands.

The multi-axial testing system for earthquake engineering researches

  • Lin, Te-Hung;Chen, Pei-Ching;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.13 no.2
    • /
    • pp.165-176
    • /
    • 2017
  • Multi-Axial Testing System (MATS) is a 6-DOF loading system located at National Center for Research on Earthquake Engineering (NCREE) in Taiwan for advanced seismic testing of structural components or sub-assemblages. MATS was designed and constructed for a large variety of structural testing, especially for the specimens that require to be subjected to vertical and longitudinal loading simultaneously, such as reinforced concrete columns and lead rubber bearings. Functionally, MATS consists of a high strength self-reacting frame, a rigid platen, and a large number of servo-hydraulic actuators. The high strength self-reacting frame is composed of two post-tensioned A-shape reinforced concrete frames interconnected by a steel-and-concrete composite cross beam and a reinforced concrete reacting base. The specimen can be anchored between the top cross beam and the bottom rigid platen within a 5-meter high and 3.25-meter wide clear space. In addition to the longitudinal horizontal actuators that can be installed for various configurations, a total number of 13 servo-hydraulic actuators are connected to the rigid platen. Degree-of-freedom control of the rigid platen can be achieved by driving these actuators commanded by a digital controller. The specification and information of MATS in detail are described in this paper, providing the users with a technical point of view on the design, application, and limitation of MATS. Finally, future potential application employing advanced experimental technology is also presented in this paper.