• Title/Summary/Keyword: Longitudinal Frame

Search Result 102, Processing Time 0.027 seconds

Effect of Longitudinal Reinforcement Ratios and Axial Deformation on Frame Analysis in RC Columns (기둥의 철근비와 축변형량이 보 해석에 미치는 영향 연구)

  • 장원석;민창식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.477-482
    • /
    • 2001
  • This paper is to study the effect of longitudinal reinforcement ratios and axial deformation on the frame analysis in reinforced concrete(RC) columns and to investigate the effect of confined concrete core, the length-width ratio and longitudinal steel ratios on frame analysis in Concrete-Filled steel Tubular(CFT) columns. An equation if derived to evaluate the modulus of elasticity for core concrete. The 34 reference data have been collected for the purpose and are processed by the mean of a multiple regression analysis technique. The equation and longitudinal reinforcement ratios was applied to RC columns for structural analysis. Then, the difference of beam moment was identified. In general, the results of analysis was indicated reasonable differences in beam moment, in case of longitudinal reinforcement ratios applied to RC columns when compared with the plain concrete columns. In CFT columns the equation was also applied in order to the effect of confined concrete core on structural analysis. Beam moment was increased as volumetric ratio of lateral steel was decreased. The effect of longitudinal steel ratios was investigated in CFT columns and was confirmed beam moment variety. The result was appeared reasonable difference in beam moment as longitudinal steel was increased.

  • PDF

Nonlinear Structural Analysis of E/R Longitudinal Frame of Ice Class Vessel (ICE CLASS가 적용되는 선박의 E/R longitudinal frame 비선형 구조 해석)

  • Cho, Sung-Am;Leem, Hyo-Kwan;Kim, Ho-Kyeong
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2006.09a
    • /
    • pp.40-45
    • /
    • 2006
  • For ships of ice class, finish Maritime Administration(FMA) requires brackets on intersections between longitudinal frames and the web frames within the ice-strengthened area. The main object of this paper is to verify ultimate load carrying capacity of longitudinal frame without brackets of engine room region of 74,100 DWT Product Oil Tanker. Comparative approach between proposed structures from builder (the proposed structure) and structures satisfying the Finnish-Swedish ice class rules (the rule structure) is used for the analysis.

  • PDF

Seismic Performance Evaluation of Non-Seismic Reinforced Concrete Buildings Strengthened by Perimeter Steel Moment Frame (철골 모멘트골조로 보강된 철근콘크리트 건물의 내진성능 평가)

  • Kim, Seonwoong
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.5
    • /
    • pp.233-241
    • /
    • 2020
  • This paper is to investigate the retrofitting effect for a non-seismic reinforced concrete frame strengthened by perimeter steel moment frames with indirect integrity, which ameliorates the problems of the direct integrity method. To achieve this, first, full-scale tests were conducted to address the structural behavior of a two-story non-seismic reinforced concrete frame and a strengthened frame. The non-seismic frame showed a maximum strength of 185 kN because the flexural-shear failure at the bottom end of columns on the first floor was governed, and shear cracks were concentrated at the beam-column joints on the second floor. The strengthened frame possessed a maximum strength of 338 kN, which is more than 1.8 times that of the non-seismic specimen. A considerable decrease in the quantity of cracks for the strengthened frame was observed compared with the non-seismic frame, while there was the obvious appearance of the failure pattern due to the shear crack. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The lateral-resisting capacity for the non-seismic bare frame and the strengthened frame may be reasonably determined per the specified shear strength of the reinforced columns in accordance with the distance to a critical section. The effective depth of the column may be referred to as the longitudinal length from the border between the column and the foundation. The proposed method had an error of about 2.2% for the non-seismic details and about 4.4% for the strengthened frame based on the closed results versus the experimental results.

Automated Damage-Controlled Desingn Method of Reinforced Concrete Frames (철근 콘크리트 프레임의 손상제어 전산설계법)

  • 정영수;전준태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.04a
    • /
    • pp.61-67
    • /
    • 1991
  • Conventional aseismic design methods of reinforced concrete frame all but disregard the state of damage over the entire building frame. This paper presents an automated damage-contorlled design method, which aims for uniform damage distribution throughout the entire building frame, as measured by the individual mumber damage indexes. Three design parameters, namely the longitudinal steel ratio, the confinement steel ratio and the frame member depth, were studied for their influence on the frame responce to an earthquake. The usefulness of this design method is demonstrated with a four story example office building predicting the extent of structural damage.

  • PDF

Numerical Analysis on Longitudinal Heat Conduction in Printed Circuit Heat Exchanger (인쇄기판형 열교환기의 유동방향 전도열전달에 관한 수치해석 연구)

  • Oh, Dong-Wook;Kim, Young;Choi, Jun Seok;Yoon, Seok Ho
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.26 no.12
    • /
    • pp.600-604
    • /
    • 2014
  • Longitudinal heat conduction is known to be an important factor in the design of a printed circuit heat exchanger(PCHE) for cryogenic applications. Parasitic heat conduction through the heat exchanger frame needs to be considered because it is known to decrease the effectiveness of the heat exchanger. In this paper, a conjugate heat transfer problem in a simple counter-flow PCHE is analyzed by a computational fluid dynamics simulation. The effect of longitudinal conduction in a straight channel is compared with the theoretical effectiveness-NTU relationship that assumes a "thin" heat exchanger frame. The calculation results suggest that the theoretical model is valid in the present calculation conditions where NTU is < 13.

Somatotype Classification in the Upper Half of Body of Elementary School Boys at the Ages 11 to 12 (학령훈기 남아의 상반신 체형유형분석 - 만 l1~12세 남아를 대상으로 -)

  • 여혜린
    • Journal of the Korean Society of Costume
    • /
    • v.53 no.3
    • /
    • pp.63-72
    • /
    • 2003
  • The purposes of this study were to classify the upper half of body somatotype and analyze the characteristics of each somatotype. The subjects of survey were 272 elementary school boys of 11 to 12 years old living in Pusan and Kyungsangnam-do. Datas were collected through 36 anthropometric measurements and 7 photographic measurements. They were analyzed by factor analysis, cluster analysis and analysis of variance. The results of the study were as follows : 1. According to the factor analysis. seven factors were extracted from measurements of the upper half of body and those factors comprised 79.62% of total variance. Specially factor 1 was characterized sectional size and factor 2 was characterized longitudinal size comprised 58.83% of total variance. 2. According to the cluster analysis, the upper half of body somatotype was classified four types : Boys in type 1 had quite high stature and big frame, broadest and most sloping shoulders, flattest chest and belly, quite protruded shoulder blades boys in type 2 had quite short stature and small frame, quite broad and most rising shoulder, most protruded belly, quite protruded shoulder blades boys in type 3 had shortest stature, smallest frame, narrowest and quite rising shoulders, most protruded chest, flattest shoulder blade and quite flat belly : boys in type 4 had highest stature, biggest frame, most protruded shoulder blades and quite protruded chest and belly.

Effect of introducing RC infill on seismic performance of damaged RC frames

  • Turk, Ahmet Murat;Ersoy, Ugur;Ozcebe, Guney
    • Structural Engineering and Mechanics
    • /
    • v.23 no.5
    • /
    • pp.469-486
    • /
    • 2006
  • The main objective of this study was to investigate the seismic behavior of damaged reinforced concrete frames rehabilitated by introducing cast in place reinforced concrete infills. Four bare and five infilled frames were constructed and tested. Each specimen consisted of two (twin) 1/3-scale, one-bay and two-story reinforced concrete frames. Test specimens were tested under reversed-cyclic lateral loading until considerable damage occurred. RC infills were then introduced to the damaged specimens. One bare specimen was infilled without being subjected to any damage. All infilled frames were then tested under reversed-cyclic lateral loading until failure. While some of the test frames were detailed properly according to the current Turkish seismic code, others were built with the common deficiencies observed in existing residential buildings. The variables investigated were the effects of the damage level and deficiencies in the bare frame on the seismic behavior of the infilled frame. The deficiencies in the frame were; low concrete strength, inadequate confinement at member ends, 90 degree hooks in column and beam ties and inadequate length of lapped splices in column longitudinal bars made above the floor levels. Test results revealed that both the lateral strength and lateral stiffness increased significantly with the introduction of reinforced concrete infills even when the frame had the deficiencies mentioned above. The deficiency which affected the behavior of infilled frames most adversely was the presence of lap splices in column longitudinal reinforcement.

Development of Multipurpose Welding Jig for Sub-Frame (서브 프레임 제작용 다목적 용접지그 개발)

  • Shin, H.G.
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.4
    • /
    • pp.131-136
    • /
    • 2011
  • In commercial vehicle, sub-frame which equipped in main frame supporting dump deck and oil tanker. This is the main structure for all equipment which including joint function. Sub-frame is made by welding process, this susceptible to deform and crack by its longitudinal size. Also various kind of sub-frame make it difficult to standardization in manufacturing process and exclusive jig is not adapted yet. Frame size is over 6~8m and weight is more than 300kg this make re-work more difficult. If manufacturing company made precise sub-frame, this is not only convenient for customers but also save the company money by reducing the working time. In this study manufacture the sub-frame be suitable for its main function and develop exclusive welding jig for obtain checking fixture function as well.

Structural Weak Area Analysis of an Electric Car Bogie Frame by Finite Element Analysis (유한요소 해석에 의한 전동차 대차 프레임의 구조 취약부 해석)

  • Goo Byeong-Choon;Whang Won-Joo;Choi Sung-Kyu;Oh Il-Geun
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.628-633
    • /
    • 2004
  • we studied the structural weak areas of an electric car bogie frame by finite element analysis. The bogie frame under consideration is a part of the standard electric car with aluminium car body. Vertical, torsional. lateral and longitudinal loadings were applied. Numerical results were compared with the experimental results. The two results are in a good agreement.

  • PDF