• 제목/요약/키워드: Longitudinal Control

검색결과 791건 처리시간 0.028초

Evo-Devo of Leaf Shape Control with a Special Emphasis on Unifacial Leaves in Monocots

  • Yamaguchi, Takahiro;Tsukaya, Hirokazu
    • 식물분류학회지
    • /
    • 제37권4호
    • /
    • pp.351-361
    • /
    • 2007
  • In angiosperms, leaves typically develop as three-dimensional structure with dorsoventral, longitudinal, and lateral axes. We have shown that the control of two axes of leaves, longitudinal and lateral axis, can be genetically separable, and four classes of genes are responsible for the polar cell expansion and polar cell proliferation in Arabidopsis. In monocots, unifacial leaf, in which leaf surface consists only of abaxial identity, has been evolved in a number of divergent species. The unifacial leaves provide very unique opportunities for the developmental studies of the leaf axes formation in monocots, because their leaf polarities are highly disorganized. In addition, the mechanism of the parallel evolution of such drastic changes in leaf polarities is of interest from an evolutionary viewpoint. In this article, we describe our recent approaches to reveal the mechanism of unifacial leaf development and evolution, including recent advances in the leaf polarity specification in angiosperms.

Linear controller design for the longitudinal model of a reusable launch vehicle X-33

  • Woo, Young-Tae;Kim, Jae-Jin;Kim, Young-Chol
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1978-1982
    • /
    • 2005
  • In this paper, a linear controller is designed for the longitudinal model of X-33 in TAEM (The Terminal Area Energy Management) phase. The CRA (Characteristic Ratio Assignment) is used as the continuous time design method such that the output response of X-33 control system tracks the reference command. The performance of the proposed controller is evaluated through the step response. Also simulation results show that the initial state of the plant is dominantly affected by the poles and zeros of the plant.

  • PDF

A Study on Singularly Perturbed Open-Loop Systems by Delta Operator Approach

  • Shim, Kyu-Hong;M. Edwin Sawan
    • Transactions on Control, Automation and Systems Engineering
    • /
    • 제3권4호
    • /
    • pp.242-249
    • /
    • 2001
  • In this paper, the open-loop state response of the two-time-scale systems by unified approach using the $\delta$-operator is presented with an example of the aircraft longitudinal dynamics. First, the $\delta$-operator system unifies both the continuous system and the discrete system simultaneously, and the $\delta$-operator approach improves the finite word-length characteristics. This saves more computing time than that of the discrete system. Second, the singular perturbation method by block diagonalization reduces the sizes and orders of the systems. This also reduces the floating-point operations (flops). The advantage of those two approaches is shown by comparing our results with the earlier ones in the illustrative example of the longitudinal motion of F-8 aircraft.

  • PDF

적응 슬라이딩 모드 축차 관측기를 이용한 직진 주행 차량 제어 (Longitudinal Motion Control of Vehicles Using Adaptive Sliding Mode Cascade Observer)

  • 김응석;김철진;이형찬
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권1호
    • /
    • pp.1-8
    • /
    • 2003
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method is used to estimate the vehicle parameters, mass, time constant, etc. The inter-vehicle spacing and its derivatives are estimated by using the sliding mode cascade observer introduced in this paper. It is shown that the proposed adaptive controller is uniformly ultimately bounded. It is also shown that the errors of the relative distance, the relative velocity and the relative acceleration asymptotically converge to zero. The simulation results are presented to investigate the effectiveness of the proposed method.

관측자를 이용한 직진 주행 차량의 적응 제어 (Observer based Adaptive Control of Longitudinal Motion of Vehicles)

  • 김응석;김동헌;이형찬;양해원
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2608-2610
    • /
    • 2000
  • In this paper, an observer-based adaptive controller is proposed to control the longitudinal motion of vehicles. The standard gradient method will be used to estimate the vehicle parameters, mass, time constant, etc. The nonlinear model between the driving force and the vehicle acceleration will be chosen to design the state observer for the vehicle velocity and acceleration. It will be shown that the proposed observer is exponentially stable, and that the adaptive controller proposed in this paper is stable. It will be proved that the errors of the relative distance, velocity and acceleration converge to zero asymptotically fast, and that the overall system is also asymptotically stable. The simulation results are presented to investigate the effectiveness of the proposed method.

  • PDF

직진 주행 차량의 강인 적응제어 구조설계 (Design of a Robust Adaptive Control Scheme for Longitudinal Motion of Vehicles)

  • 김동헌;양해원
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권1호
    • /
    • pp.31-37
    • /
    • 2001
  • A robust adaptive technique for the longitudinal control of a platoon of automated vehicles is presented. A nonlinear model is used to represent the dynamics of each vehicle within the platoon. The external disturbances such as wind gust and a disturbance term due to engine transmission variations and so on are considered. The state observer is used to avoid direct measurement of the relative velocity or acceleration between the controlled and leading vehicles or the controlled vehicles's acceleration. The proposed controller guarantees to recover platoon stability in operation even if a speed dependent spacing policy is adopted, which incorporates a constant time headway in addition to the constant distance. It is shown that the proposed observer is exponentially stable, and the at the robust adaptive controller is stable. The simulation results demonstrate excellent tracking even in the presence of disturbances.

  • PDF

자율주행 시뮬레이션 환경을 위한 차량 구동 및 제동 제어기 개발 (Development of Throttle and Brake Controller for Autonomous Vehicle Simulation Environment)

  • 곽지섭;이경수
    • 자동차안전학회지
    • /
    • 제14권1호
    • /
    • pp.39-44
    • /
    • 2022
  • This paper presents a development of throttle and brake controller for autonomous vehicle simulation environment. Most of 3D simulator control autonomous vehicle by throttle and brake command. Therefore additional longitudinal controller is required to calculate pedal input from desired acceleration. The controller consists of two parts, feedback controller and feedforward controller. The feedback controller is designed to compensate error between the actual acceleration and desired acceleration calculated from autonomous driving algorithm. The feedforward controller is designed for fast response and the output is determined by the actual vehicle speed and desired acceleration. To verify the performance of the controller, simulations were conducted for various scenarios, and it was confirmed that the controller can successfully follow the target acceleration.

이송중인 웹의 장력 및 사행제어 (Control of Longitudinal Tension and Lateral Position of a Moving Web)

  • 신기현;권순오
    • 한국펄프종이공학회:학술대회논문집
    • /
    • 한국펄프종이공학회 2002년도 추계학술발표논문집
    • /
    • pp.74-80
    • /
    • 2002
  • A mathematical tension model for a moving web in a multi-span web handling system was derived and validated by using a simulator which includes unwinder, driven roller, winder, load cells, controllers, etc. A tension controller was designed to compensate tension disturbances generated by velocity changes of the unwinder and driven roller. From experimental results it was proved that the tension model properly expressed the tension behavior of a moving web for specific conditions. The distributed tension controller designed by using the pole-placement technique compensated the tension disturbances transfered from upsteram tension variation. Interactions between web spans including "tension transfer phenomenon" were clearly confirmed through the study. A mathematical model of lateral motion of a moving web was verified also by using the same experimental apparatus which includes displacement type guidance systems. And a feedforward control strategy was designed for more accurate control of the lateral motion of a moving web, which utilize a measured signal of the lateral displacement of web in a previous span and a more correctly identified mathematical model to estimate the disturbance of lateral motion from the previous span. This approach was turned out to be effective in improving the performance of the guidance system for more wide range disturbances.

  • PDF

LiDAR 기반 차량-인프라 연계 상황인지를 통한 사고다발지역에서의 차량 종방향 능동제어 시스템 연구 (Research of Vehicles Longitudinal Adaptive Control using V2I Situated Cognition based on LiDAR for Accident Prone Areas)

  • 김재환;이제욱;윤복중;박재웅;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제18권5호
    • /
    • pp.453-464
    • /
    • 2012
  • This is a research of an adaptive longitudinal control system for situated cognition in wide range, traffic accidents reduction and safety driving environment by integrated system which graft a road infrastructure's information based on IT onto the intelligent vehicle combined automobile and IT technology. The road infrastructure installed by laser scanner in intersection, speed limited area and sharp curve area where is many risk of traffic accident. The road infra conducts objects recognition, segmentation, and tracking for determining dangerous situation and communicates real-time information by Ethernet with vehicle. Also, the data which transmitted from infrastructure supports safety driving by integrated with laser scanner's data on vehicle bumper.

Backstepping 방법을 이용한 IVHS에서의 차량군 리드 차량의 종렬제어기 설계 (Longitudinal Control of the Lead Vehicle of a Platoon in IVHS using Backstepping Method)

  • 박종호;정길도
    • 한국정밀공학회지
    • /
    • 제17권5호
    • /
    • pp.137-144
    • /
    • 2000
  • In this paper, a longitudinal control of the lead vehicle for a platoon in IVHS Regulation Layer is proposed. The backstepping method has been used for the controller design. This method has an advantage in that its stability need not be proven since the controller is designed based on the Lyapunov Function. The control object is that the lead vehicle tracks a reference velocity and maintains a safe distance between the inter-platoons while the followers are keeping the speed of the lead vehicle of a platoon. The coordinate of system is transformed to a new coordinate system for its convenience to design controller. The new coordinate system is composed of error and new error variable. The error is the difference between the safe distance and the actual distance of inter-platoons. A new error variable is the difference between the velocity of vehicle and the estimated state of a system operated by the virtual input. The Lyapunov function is obtained based on the variables of new coordinate system. In the computer simulation, several cases have been studied such as when the lead vehicle is tracking the optimal speed. or a lead vehicle of the following platoon tracks the velocity of the previous platoon while maintaining a safe distance. Also a nonlinear engine time constant case has been investigated. All the simulation results show that the designed controller satisfies the control object sufficiently.

  • PDF