• 제목/요약/키워드: Longitudinal Bending

검색결과 319건 처리시간 0.024초

지진파 입사방향에 따른 매설관 종방향 응답특성 규명 (Effect of Incident Direction of Earthquake Motion on Seismic Response of Buried Pipeline)

  • 곽형주;박두희;이장근;강재모
    • 한국지반환경공학회 논문집
    • /
    • 제16권9호
    • /
    • pp.43-51
    • /
    • 2015
  • 이 연구에서는 사실적인 매설관의 종방향 지진 응답특성을 규명하기 위하여 3차원 시간 이력해석이 가능한 쉘-스프링 수치모델을 구축하였으며 지진파 입사방향, 2방향 재하의 영향을 평가하였다. 조화운동을 적용한 결과, 이의 주기는 큰 영향을 주는 것으로 나타났다. 이는 주기가 감소할수록 매설관의 곡률이 증가하며 응답이 증가하기 때문인 것으로 판단된다. 입사방향의 영향을 평가하기 위하여 매설관 축 방향, 수평평면, 그리고 수직평면으로 운동을 재하 하였다. 매설관 축 방향으로 하중을 재하할 경우 휨 변형만을 유발하므로 응답이 매우 작게 계산되었다. 수평 및 수직평면에서 매설관 축 방향과 $45^{\circ}$로 재하 하는 경우 축방향 변위가 응답에 지배적인 영향을 주는 것으로 나타났다. 또한 2방향 재하 시, 휨 변형만을 유발하는 요소의 영향이 극히 작으므로 1방향으로만 재하 하는 경우와 결과가 유사하게 계산되었다. 계측기록을 재하 하는 경우에도 응답은 유사하게 계산되었고 1방향 및 2방향 해석의 결과는 크게 다르지 않은 것으로 나타났다. 결과적으로 매설관의 종방향 지진 응답은 축 방향 변위를 유발하는 1방향 재하만으로도 충분히 정확하게 예측할 수 있을 것으로 판단된다.

Nonlinear finite element analysis of slender RC columns strengthened with FRP sheets using different patterns

  • El-Kholy, Ahmed M.;Osman, Ahmed O.;EL-Sayed, Alaa A.
    • Computers and Concrete
    • /
    • 제29권4호
    • /
    • pp.219-235
    • /
    • 2022
  • Strengthening slender reinforced concrete (RC) columns is a challenge. They are susceptible to overall buckling that induces bending moment and axial compression. This study presents the precise three-dimensional finite element modeling of slender RC columns strengthened with fiber-reinforced polymer (FRP) composites sheets with various patterns under concentric or eccentric compression. The slenderness ratio λ (height/width ratio) of the studied columns ranged from 15 to 35. First, to determine the optimal modeling procedure, nine alternative nonlinear finite element models were presented to simulate the experimental behavior of seven FRP-strengthened slender RC columns under eccentric compression. The models simulated concrete behavior under compression and tension, FRP laminate sheets with different fiber orientations, crack propagation, FRP-concrete interface, and eccentric compression. Then, the validated modeling procedure was applied to simulate 58 FRP-strengthened slender RC columns under compression with minor eccentricity to represent the inevitable geometric imperfections. The simulated columns showed two cross sections (square and rectangular), variable λ values (15, 22, and 35), and four strengthening patterns for FRP sheet layers (hoop H, longitudinal L, partial longitudinal Lw, and longitudinal coupled with hoop LH). For λ=15-22, pattern L showed the highest strengthening effectiveness, pattern Lw showed brittle failure, steel reinforcement bars exhibited compressive yielding, ties exhibited tensile yielding, and concrete failed under compression. For λ>22, pattern Lw outperformed pattern L in terms of the strengthening effectiveness relative to equivalent weight of FRP layers, steel reinforcement bars exhibited crossover tensile strain, and concrete failed under tension. Patterns H and LH (compared with pattern L) showed minor strengthening effectiveness.

Shear strengthening of reinforced concrete beams with minimum CFRP and GFRP strips using different wrapping technics without anchoring application

  • Aksoylu, Ceyhun
    • Steel and Composite Structures
    • /
    • 제44권6호
    • /
    • pp.845-865
    • /
    • 2022
  • In this study, the performance of shear deficient reinforced concrete (RC) beams with rectangular cross-sections, which were externally bonded reinforced (EBR) with high strength CFRP and GFRP strips composite along shear spans, has been experimentally and analytically investigated under vertical load. In the study, the minimum CFRP and GFRP strips width over spacing were considered. The shear beam with turned end to a bending beam was investigated by applying different composite strips. Therefore various arising in each of strength, ductility, rigidity, and energy dissipation capacity were obtained. A total of 12 small-scaled experimental programs have been performed. Beam dimensions have been taken as 100×150×1000 mm. Four beams have been tested as unstrengthened samples. This paper focuses on the effect of minimum CFRP and GFRP strip width on behaviours of RC beams shear-strengthened with full-wrapping, U-wrapping, and U-wrapping+longitudinal bonding strips. Strengthened beams showed significant increments for flexural ductility, energy dissipation, and inelastic performance. The full wrapping strips applied against shear failure have increased the load-carrying capacity of samples 53%-63% interval rate. Although full wrapping is the best strengthening choice, the U-wrapping and U-wrapping+longitudinal strips of both CFRP and GFRP bonding increased the shear capacity by 53%~75% compared to the S2 sample. In terms of ductility, the best result has been obtained by the type of strengthening where the S5 beam was completely GFRP wrapped. The experimental results were also compared with the analytically given by ACI440.2R-17, TBEC-2019 and FIB-2001. Especially in U-wrapped beams, the estimation of FIB was determined to be 81%. The estimates of the other codes are far from meeting the experimental results; therefore, essential improvements should be applied to the codes, especially regarding CFRP and GFRP deformation and approaches for longitudinal strip connections. According to the test results, it is suggested that GFRP, which is at least as effective but cheaper than CFRP, may be preferred for strengthening applications.

회전 외팔보의 굽힘 진동해석 (Bending Vibration of Rotating Cantilever Beams)

  • 유홍희
    • 대한기계학회논문집
    • /
    • 제16권5호
    • /
    • pp.891-898
    • /
    • 1992
  • 본 연구에서는 기존의 방식들의 단점들을 극복할 수 있고 회전하는 외팔보의 굽힘 진동 특성을 효과적으로 정확하게 예측할 수 있는 일관성 있고 간명한 방법을 제 시하는 것을 목적으로 한다. 참고문헌(9-11)에서는 회전하는 외팔보의 선형 운동방정 식을 복합 변형변수를 이용하여 구하고 있는데 이러한 동적모데링은 참고문헌(4-8)에 서와 같은 불필요한 원심력의 내재적 대입과정을 통한 2단계 운동 방정식 유도를 피할 수 있어 과정의 일관성과 간명성을 제공할 수 있음을 보였다. 본 연구에서는 이들 연구 결과에 근거하여 진동해석을 위한 방법을 제공하고 결과를 도출 분석 비교하는 것을 그 내용으로 한다.

충돌 손상된 선체구조의 최종 종강도에 관한 실험적 연구 (An Experimental Study on the Ultimate Longitudinal Strength of Ship Structures Damaged due to Side Collision)

  • 이탁기;임채환
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.85-90
    • /
    • 2008
  • Ships in bad weather conditions are likely to be subjected to accidental loads, such as high bending moment, collision, and grounding. Once she has damage to her hull, her ultimate strength will be reduced. This paper discusses an investigation of the effect of collision damage on the ultimate strength of a ship structure by performing a series of collapse tests. For the experiment, five box-girder models with stiffeners were prepared with a cross section of $720mm\;{\times}\;720mm$ and a length of 900mm. Of the five, one had no damage and four had an ellipse shaped damage area that represented the shape of the bulbous bow of a colliding ship. The amount of damage size was different between models. Among the damaged models, the damage in three of them was made by cutting the plate and stiffener, and in one by pressing to represent collision damage. Experiments were carried out under a pure bending load and the applied load and displacements were recorded. The ultimate strength was reduced as the damage size increased, as expected. The one with the largest amount of damage had damage to 30% of the depth, and its ultimate strength was reduced by 19% compared to the undamaged one. The pressed one has higher ultimate strength than those that were cut. This might be due to the fact that the plate around the pressed damage area contributes to the ultimate strength, whereas the cut one has no plate to contribute.

L자형 배관내 물의 결빙에 관한 해석적 연구 (Numerical Analysis on the Freezing Process of Internal Water Flow in a L-Shape Pipe)

  • 이충호;서정세
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.144-150
    • /
    • 2018
  • In this study, the freezing process of L-shaped pipe exposed to the outside was investigated numerically by considering the mushy zone of freezing water. From the numerical results, it was found that the flow was outwardly directed due to the influence of the L-shaped bending part in the outside exposed part of the pipe, and the ice was formed in the shape of longitudinal corrugation on the wall surface of the pipe after the bending part. It is confirmed that this phenomenon is caused by the venturi effect due to the freezing as seen in connection with the velocity distribution in the pipe. It is found that the remelting phenomenon at the end of the freezing section occur simultaneously during the process of forming the ice in the pipe section. In regard of the factors affecting freezing, it was found that the thickness of the freezing layer is increased as the exposed pipe surface temperature is decreased, and the pipe surface temperature had a significant effect on the change of the freezing layer thickness. At the same time, it was found that the freezing layer becomes relatively thin when the water inflow rate is increased. This phenomenon was caused by reducing the exposure time of freezing water due to the vigorous flow convection of the water fluid.

Economic construction management of composite beam using the head stud shear connector with encased cold-formed steel built-up fix beam via efficient computer simulation

  • Yin, Jinzhao;Tong, Huizhi;Gholizadeh, Morteza;Zandi, Yousef;Selmi, Abdellatif;Roco-Videla, Angel;Issakhov, Alibek
    • Advances in concrete construction
    • /
    • 제11권5호
    • /
    • pp.429-445
    • /
    • 2021
  • With regard to economic efficiency, composite fix beams are widely used to pass longitudinal shear forces across the interface. The current knowledge of the composite beam load-slip activity and shear capability are restricted to data from measurements of push-off. Modelling and analysis of the composite beams based on Euro-code 4 regarding to shear, bending, and deflection under differing loads were carried out using Finite Element through an efficient computer simulation and the final loading and sections capacity based on the failure modes was analysed. In bending, the section potential was increased by an improvement of the strength in both steel and concrete, but the flexural and compressive resistance growth is very weak (3.2% 3.1% and 3.0%), while the strength of the concrete has increased respectively from 25 N/mm2 to 30, 35, and 40 N/mm2 compared to the increment of steel strength by 27% and 21% when it was raised from 275 to 355 and 460 N/mm2, respectively. It was found that the final flexural load capacity of fix beams was declined with increase in the fix beam span for both three steel strength. The shear capacity of sections was remained unchanged at constant steel strength and different length, but raised with final yield strength increment of steel sections by 29%, and 67% when it was raised from 275 N/mm2 to 355 N/mm2 and 460 N/mm2, respectively.

참나무시들음병 훈증목의 강도 성능 평가 (Evaluation of Strength Performance of the Fumigation Treated Wood Affected by the Oak Wilt Disease)

  • SONG, Dabin;KIM, Keonho
    • Journal of the Korean Wood Science and Technology
    • /
    • 제48권6호
    • /
    • pp.820-831
    • /
    • 2020
  • 참나무시들음병 고사목으로부터 피해확산을 막기위해 주로 훈증처리 방법을 이용한다. 훈증처리에 따른 신갈나무 피해목의 강도적 활용 가능성을 검증하기 위해 훈증처리목재의 압축성능과 휨성능평가를 수행하였다. 훈증처리목재는 약 9개월 간 네마섹트(Metam-sodium)로 훈증처리하였다. 참나무시들음병 훈증처리목재의 기건 종압축강도는 58.87 MPa, 압축탄성계수는 5.66 GPa로 측정되었으며 건전목과 비슷한 경향을 보였다. 혼증목의 성숙재부 강도성능은 미성숙재부보다 16% 더 높은 강도값을 보였다. 참나무 건전목의 압축파괴형상은 다양한 형상으로 나타나지만 훈증처리목재의 경우 대부분 전단형 파괴형상을 보였다. 훈증처리목재의 휨강도는 157.43 MPa로 건전재보다 8% 높게 측정되었고 휨 탄성계수는 16.38 GPa로 건전재보다 16% 낮게 측정되었다. 그러나 훈증처리목재의 휨강도성능치에 대한 변동계수는 건전목보다 낮은 것을 확인하였다.

금속인장교정기의 공정변수 설계를 위한 탄소성 유한요소해석 (2)-전체공정 해석 (Plasto-plastic Finite Element Analysis for the Parametric Process Design of the Tension Leveller(2) -Full Set Analysis)

  • 이형욱;허훈;박상래
    • 소성∙가공
    • /
    • 제11권2호
    • /
    • pp.147-154
    • /
    • 2002
  • The tension levelling Process is Performed to elongate the strip plastically In combination of tensile and bending strain so that all longitudinal fibers In the strip have an approximately equal amount ofn length and undesirable strip shapes are corrected to the flat shape. Thus paper is concerned with a simulation of the tension levelling process based on the analysis of tile unit model for the tension leveller. Analysis technique such as the sequential analysis of the unit model is suggested and verified with the assembly analysis of the unit model for the effective arts economic analysis of the full set of the tension leveller. Analysis of the full tension levelling Process using sequential unit models Is carried out for steel strips with the shape defect and provides the effect of the intermesh and optimum amount of the intermesh in tension levelling process.

Experimental Verification of Resistance-Demand Approach for Shear of HSC Beams

  • El-Sayed, Ahmed K.;Shuraim, Ahmed B.
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권4호
    • /
    • pp.513-525
    • /
    • 2016
  • The resistance-demand approach has emerged as an effective approach for determining the shear capacity of reinforced concrete beams. This approach is based on the fact that both the shear resistance and shear demand are correlated with flexural tensile strain from compatibility and equilibrium requirements. The basic shear strength, under a given loading is determined from the intersection of the demand and resistance curves. This paper verifies the applicability of resistance-demand procedure for predicting the shear capacity of high strength concrete beams without web reinforcement. A total of 18 beams were constructed and tested in four-point bending up to failure. The test variables included the longitudinal reinforcement ratio, the shear span to depth ratio, and the beam depth. The shear capacity of the beams was predicted using the proposed procedure and compared with the experimental values. The results of the comparison showed good prediction capability and can be useful to design practice.