• Title/Summary/Keyword: Long-term soil behavior

Search Result 66, Processing Time 0.026 seconds

Integrated Analysis of Electrical Resistivity Monitoring and Geotechnical Data for Soft Ground (연약지반에서의 전기비저항 모니터링 및 지반조사 자료의 복합 해석)

  • Ji, Yoonsoo;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.36 no.1
    • /
    • pp.16-26
    • /
    • 2015
  • To investigate the applicability of physical prospecting technique in soft ground assessment, the resistivity monitoring data of 6 months are acquired. The Multichannel Analysis Surface Wave (MASW) has been additionally performed to identify the shear wave velocity and strength distribution of soft ground. Moreover, by using the Cone Penetration Test (CPT) and laboratory tests of drilling samples, a relationship with the physical prospect data is checked and the reliability of the physical prospect data is increased. Through these activities, the behavior patterns of soft soil are identified by long term monitoring, and the significant relationship between the shear wave velocity and laboratory tests has been confirmed, both of which can be useful in the surface wave exploration to evaluate the strength of soft ground. Finally, using the geostatistical method, 3-dimensional soil base distribution images are obtained about the combined physical prospecting data with heterogeneous data. Through the studies, the nature of entire area can be determined by long term resistivity monitoring for the soft ground assessment in wider area. It would be more economic and reliable if additional exploring and drilling samples can be analyzed, which can reinforce the assessment.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.

An Experimental Study of Reservoir Failure Phenomena According to Transitional Zone: Spillway Scour During Overflow (저수지 월류 시 여수토 접속부 세굴에 따른 붕괴 현상의 실험적 연구)

  • Kim, Young-Ik;Yeon, Kyu-Seok;Kim, Ki-Sung;Jeong, Jong-Woo;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.2
    • /
    • pp.27-33
    • /
    • 2011
  • This study is a preliminary investigation into the development of a construction method that will protect a reservoir even during over flows caused by severe flooding. Through hydraulic modeling tests, the destructive phenomena caused by spillway-junction scour during reservoir overflow were modeled, and the effects on the embankment during such an overflow and the spillway-junction movements are discussed. The reservoir destruction model used the Tanbu reservoir, located in Gangwondo Chuncheon-si Namsanmyeon (H=22 m, L=115 m), as the model reservoir and created an embankment with a 1/60 ratio. We review the spillway-junction safety factor during overflow and embankment movement following reinforcement measures for three different cases: no reinforcement, cemented sand and gravel (CSG) reinforcement and water-blocking sheet reinforcement. The results of this study confirmed that when the spillway-junction is exposed to soil, it is very vulnerable to overflow and that a water-blocking sheet or CSG reinforcement are very effective measures in preventing embankment destruction in the long-term period.

Creep Deformation Characteristics of Weathered Granite Soil (화강풍화토의 creep 변형특성)

  • Park, Heung-Gyu;Kim, Yong-Ha;Paeng, Woo-Seon;Lee, Hae-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.12
    • /
    • pp.43-52
    • /
    • 2007
  • This study analyzes the characteristics of creep deformation behavior of weathered granite soils used in road embankments. The creep strain under the unconfined compressive state demonstrated an excellent agreement with the theoretical analysis of the burgers substance. The elastic deformation showed a termination in its characteristics after a long-term period owing to the increase in applied loads. The primary creep strain was 0.0028 and concluded that the deformation completed within $3{\sim}5$ days after applying the loads. Also, the completing time of creep deformation in the embankment soils increased in proportion to the height of embankment soils. The secondary creep strain is about 50% of the primary creep strain.

The Study on the Development and the Applicability of Consolidation Analysis Program Considering the Creep Strain (Creep 변형을 고려한 압밀해석 프로그램의 개발과 적용성 분석)

  • Kim, Su-Sam;Jeong, Seung-Yong;An, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.129-142
    • /
    • 1998
  • This research is focused on the inducement of the constitutive equation considering the creep strain component and on the development of a finite element method program. The purpose of this research was to contribute to the design of construction structures or to the construction management in soft clay ground through predicting the long-term strain of construction structures reasonably bused on the above program. Modified Cam Clay model was adopted to describe the elastic-plastic behavior of clayey soil. And in the calculation of the creep sprain, the secondary coefficient of consolidation C. was applied for considering the volumetric creep element and the constants m, $\alpha$, A were rosed by the empirical creep equation proposed by Singh 8E Mitchell for considering the deviatoric creep element. To examine the reliability of the program which is developed in this study, the estimated values by this program were compared with the theoretical solution and the experimental results. And the applicability of the developed program was found to be reliable from the sensitive analysis of each parameters used in this study. According to the results obtained from the application of the program on the field measurement data, the estimated values by the program were found with be consistent with the actual values. And from the analysis of the displacement of embankments, the case of considering the creep behavior induced much fower errors than the case of neglecting it. But the results obtained from considering the volumetric creep behavior only were slightly underestimated the results from considering the deviator creep behavior showed the slightly overestimated values. Therefore, it remains the task of further studios to develop the laboratory test devices to obtain the reliable creep parameters, and to select the appropriate soil parameters, etc.

  • PDF

A mechanical model of vehicle-slab track coupled system with differential subgrade settlement

  • Guo, Yu;Zhai, Wanming;Sun, Yu
    • Structural Engineering and Mechanics
    • /
    • v.66 no.1
    • /
    • pp.15-25
    • /
    • 2018
  • Post-construction subgrade settlement especially differential settlement, has become a key issue in construction and operation of non-ballasted track on high-speed railway soil subgrade, which may also affect the dynamic performance of passing trains. To estimate the effect of differential subgrade settlement on the mechanical behaviors of the vehicle-slab track system, a detailed model considering nonlinear subgrade support and initial track state due to track self-weight is developed. Accordingly, analysis aiming at a typical high-speed vehicle coupled with a deteriorated slab track owing to differential subgrade settlement is carried out, in terms of two aspects: (i) determination of an initial mapping relationship between subgrade settlement and track deflections as well as contact state between track and subgrade based on a semi-analytical method; (ii) simulation of dynamic performance of the coupled system by employing a time integration approach. The investigation indicates that subgrade settlement results in additional track irregularity, and locally, the contact between the concrete track and the soil subgrade is prone to failure. Moreover, wheel-rail interaction is significantly exacerbated by the track degradation and abnormal responses occur as a result of the unsupported areas. Distributions of interlaminar contact forces in track system vary dramatically due to the combined effect of track deterioration and dynamic load. These may not only intensify the dynamic responses of the coupled system, but also have impacts on the long-term behavior of the track components.

Behavior Analysis of Particle Crushing about Sabkha Layer under Hydrotest (Sabkha층의 Hydrotest 시 입자파쇄 거동분석)

  • Kim, Seokju;Han, Heuisoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.9
    • /
    • pp.57-65
    • /
    • 2013
  • Carbonate sands can be crushed under low confining pressure to achieve high compressibility. So particle crushing has significant influence on characteristics of strength and deformation. Trial embankment and hydrotest are conducted on Sabkha layer, consisting of carbonate sand to build tank structure. In this paper the settlement behavior was analyzed from each test. Particle crushing happened from 80 to 170kPa stress under compression test, and calcium was detected from chemical test. The test result came out Sabkha soil was very weak and easy to be crushing. About trial embankment test, particle crushing was not happen, and then extinction of pore water pressure and settlements were finished just during 2 days. On the other hand, the long-term settlement was happened in hydrotest. So the two test results did not correspond to each other. If loading stress is higher than yielding stress, instant settlement and secondary compression settlement are happened as a result of the particle crushing.

Analysis Method for Non-Linear Finite Strain Consolidation for Soft Dredged Soil Deposit - Part II: Analysis Method and Craney Island Case Study (초연약 준설 매립지반의 비선형 유한변형 압밀해석기법 - Part II: 해석기법과 Craney Island 사례분석)

  • Choi, Hang-Seok;Kwak, Tae-Hoon;Lee, Chul-Ho;Lee, Dong-Seop;Stark, T.D.
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.5-15
    • /
    • 2011
  • This paper presents two analysis methods for characterizing the non-linear finite strain consolidation behavior of highly deformable dredged soil deposits along with the fundamental parameters obtained in the companion paper; that is, the zero effective stress void ratio, the non-linear relationships of void ratio-effective stress and void ratio-hydraulic conductivity. The simplified Morris's analytical solution (2002) and the widely recognized numerical program, PSDDF (primary Consolidation, Secondary Compression, and Desiccation of Dredged Fill) for both single and double drainage conditions are adopted in this paper to verify a series of laboratory experiments for self-weight consolidation of the Incheon clay and Kaolinite. The comparisons show that the analysis methods proposed herein can properly simulate the long-term non-linear finite strain consolidation behavior for dredged soils in the field. In addition, a case study for the artificial Craney Island has been conducted to illustrate the importance of obtaining appropriate non-linear finite strain consolidation parameters and the applicability of PSDDF in promoting dredged soil disposal.

The evaluation of wetland sustainability for constructing a washland and Its hydrologic effect to Upo wetland (천변저류지 조성에 따른 습지지속가능성 평가 및 우포늪에 미치는 수문학적 영향 평가)

  • Kim, Jae-Chul;Kim, Jin-Kwan;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.137-148
    • /
    • 2008
  • There have been many cases of using wetlands as an alternative in controlling stormwater, treating mining leachate, and agricultural discharge, and so on, recently. The reality is, however, that the wetlands are not properly applicable because of the lack of enough longterm data for wetlands due to the difficulty of long-term monitoring. Therefore, this study tries to analyze the storage of Upo, Mokpo, Sajipo, and Jjokjibeul in Topyeong watershed using SWAT(Soil and Water Assessment Tool) model, one of the long-term runoff hydrologic model, for the purpose of generating the long-term data and analyzing the hydrologic behavior of wetlands based on the generated data. Also, the changes in runoff at the outlet are analyzed after applying the simulation of constructing washland in Topyeong watershed and the storage in Upo is analyzed. The result shows that the runoff at the outlet of the watershed is decreased in rainy season from July to August and increased in dry season from December to February. In addition, the analysis of Upo storage concludes that Upo can be influenced by the construction of the washland. The duration curve of washland is then analyzed in order to evaluate the wetland's sustainability in terms of washland and it appears that the runoff of washland is simulated to be less than that of the existing wetland. Moreover, runoffs of some washlands are simulated to be less even in wet season. These results lead to the fact that there should be further hydrologic management for constructed washland. Then, the changes in loads (TN and TP) because of constructing washland are analyzed. The result shows that the loads are reduced because of the construction. Also, the changes in loads due to the construction of buffer strips are analyzed to compare the load reductions caused by a washland. Finally, REMM model, a riparian management model, is applied to overcome the hydrologic ambiguousness of SWAT model, and then, the SWAT model results are compared to those of REMM.

An Estimation of Long-term Settlements in the Large Reclamation Site and Determination of Additional Sampling Positions Using Geostntistics and GIS (GIS 및 지구통계학을 적용한 대규모 매립지반의 장기 침하량 예측 및 추가 지반조사 위치의 결정)

  • Lee, Hyuk-Jin;Park, Sa-Won;Yoo, Si-Dong;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.131-141
    • /
    • 2004
  • For geotechnical applications, engineers use data obtained from a site investigation to interpret the structure and potential behavior of the subsurface. In most cases, these data consist of samples that represent 1/100,000 or less of the total volume of soil. These samples and associated field and lab testing provide the information used to estimate soil parameter values. The resulting values are estimated ones and there exists some likelihood that actual soil conditions are significantly different from the estimates. This may be the case even if the sampling and interpretation procedures are performed in accordance with standard practice. Although these efforts have been made to characterize the uncertainty associated with geotechnical parameters, there is no commonly accepted method to evaluate quantitatively the quality of an investigation plan as a whole or the relative significance of individual sampling points or potential sampling points.