• Title/Summary/Keyword: Long-term load

Search Result 654, Processing Time 0.025 seconds

Root cause analysis of the abnormal wear on diesel engine crankpin and lubricant contamination (윤활유 오염과 디젤엔진의 크랭크핀 이상마모에 대한 원인 규명)

  • Seo, Jeongwoo;Park, Donghee
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.7
    • /
    • pp.854-867
    • /
    • 2014
  • In the circumstance that high oil price state is continued over the world, the investment in crude oil development by oil major is a trend of increasing. Recently the number of delivered drill-ship for 5 years has been sharply increased all over the world and about twice than that of past 30 years. As addition to the increase of the drill-ship demand, the operation of drill-ships which is delivered recently is about 3,000 meters, ultra deep sea, on average and the work area is expending. Accordingly the drilling system including the size and length of pipe for drilling has been bigger and bigger and the power supply equipment for operation system also has large capacity. Unlike merchant vessel, high power and high voltage of diesel generators are required for drill-ship for which the demand for V-type 320 bore of diesel generator has increased. It is on the raised that the importance of lubrication oil cleaning for diesel generator on drill-ship which has longer time for construction, and also long term low load operation is unavoidable during commissioning of equipments. Recently it was reported that engine crankpin was damaged due to the hard contact caused by the abnormal wear down(Cam wear) on crankpin and bearing. The same pattern of wear down was found through the inspection on series vessels and the other vessel under commissioning. The purpose of this paper is to analyze of the wear mechanism based on the observation and theories and objective research from actual cases and to prepare the counter measures to avoid foreseeable damage when the lubricating oil is not properly cleaned.

Life-Cycle Cost-Effective Optimum Design of Steel Bridges Considering Environmental Stressors (환경영향인자를 고려한 강교의 생애주기비용 최적설계)

  • Lee, Kwang Min;Cho, Hyo Nam;Cha, Cheol Jun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.227-241
    • /
    • 2005
  • This paper presents a practical and realistic Life-Cycle Cost (LCC) optimum design methodology for steel bridges considering the long-term effect of environmental stressors such as corrosion and heavy truck traffics on bridge reliability. The LCC functions considered in the LCC optimization consist of initial cost, expected life-cycle maintenance cost, and expected life-cycle rehabilitation costs including repair/replacement costs, loss of contents or fatality and injury losses, road user costs, and indirect socio-economic losses. For the assessment of the life-cycle rehabilitation costs, the annual probability of failure, which depends upon the prior and updated load and resistance histories, should be accounted for. For the purpose, Nowak live load model and a modified corrosion propagation model, which takes into consideration corrosion initiation, corrosion rate, and repainting effect, are adopted in this study. The proposed methodology is applied to the LCC optimum design problem of an actual steel box girder bridge with 3 continuous spans (40m+50m+40m=130m). Various sensitivity analyses are performed to investigate the effects of various design parameters and conditions on the LCC-effectiveness. From the numerical investigation, it has been observed that local corrosion environments and the volume of truck traffic significantly influence the LCC-effective optimum design of steel bridges. Thus, these conditions should be considered as crucial parameters for the optimum LCC-effective design.

Effects of Controlled Drainage and Slow-release Fertilizer on Nutrient Pollutant Loads from Paddy Fields (물꼬관리 및 완효성 비료 시비가 포장단위 논에서의 영양물질 배출부하량에 미치는 영향)

  • Kim, Kyeung;Kang, Moon Seong;Song, Inhong;Song, Jung-Hun;Park, Jihoon;Jun, Sang Min;Jang, Jeong Ryeol;Kim, Jin Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.1
    • /
    • pp.1-10
    • /
    • 2016
  • The objective of this study was to investigate the effects of farming methods on mass balance from paddy rice. The experiment fields were established at Chunpo-myeon, Iksan-si in the Saemangeum watershed. Experiment was performed during the growing season to assess water and mass balances of the study field in 2013. The three different farming practices were applied: conventional (TR-A), drainage outlet heighten (TR-B) and slow release fertilizer use (TR-C). Drainage amount from TR-B was reduced by 28.5 % compared to the TR-A, while the amount from TR-C was similar to that of TR-A. Overall, nutrient concentration of paddy water were similar among the treatments except for T-P. Mean T-P concentration from TR-C was lower than that from TR-A (p-value<0.05). As the results of mass balance, TR-B appeared to reduce nutrient surface loss, substantially by 30.9 % and 40.8 % for T-N and T-P an compared to TR-A. TR-C treatment also demonstrated nutrient load reduction by 38.2 % and 40.1 % for T-N and T-P. The study results showed that water and fertilizer treatments are effective in surface load reduction respectively from paddy fields, and, long-term monitoring and evaluation is needed to confirm the reduction.

A Study on the Pile Material Suited for Pile Supported Embankment Reinforced by Geosynthetics (토목섬유로 보강된 성토지지말뚝 구조에 적합한 말뚝재료의 개발)

  • Choi, Choong-Lak;Lee, Kwang-Wu;Kim, Eun-Ho;Jung, Ji-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.1
    • /
    • pp.21-35
    • /
    • 2016
  • It is a current trend that the concrete track is applied for high speed railway. In the case of the railway embankment constructed on soft ground, the damage to concrete track which is sensitive to settlement such as distortion and deflection could be caused by very small amount of long term settlement. Pile Supported Embankment method can be considered as the effective method to control the residual settlement of the railway embankment on soft ground. The Geosynthetics is used inside of the embankment to maximize the arching effect transmitting the load of the embankment to the top of the piles. But, PHC piles that are generally used for bridge structures are also applied as the pile supporting the load of embankment concentrated by the effect of the Geosynthetics. That is very low efficiency in respect of pile material. So, in this study, the cast in place concrete pile was selected as the most suitable pile type for supporting the embankment by a case study and the optimum mixing condition of concrete using a by-product of industry was induced by performing the mixing designs and the compressive strength designs. And it is shown that the cast in place pile with the optimum mixing condition using the by-product of industry is 2.8 times more efficient than the PHC pile for the purpose of Pile Supported Embankment by the finite element analysis method.

Estimation of Sediment Transport and Long-term Prediction of Riverbed Elevation Changes in Yangon River (양곤강 퇴적물 이동 및 장기 하상변화율 측정)

  • Htet, Salaing Shine;Chang, Yeon S.
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.6
    • /
    • pp.450-457
    • /
    • 2019
  • Sedimentation is a common problem for river ports. But its intensity depends on the rate of sedimentation, channel shape and size, hydrodynamic behavior of the river and the importance of the port. High sedimentation rate in Yangon River has become one major issue for Myanmar as her largest port is located on the Yangon riverbank. As a result of the high sedimentation rate, shallow water area near the confluence of Yangon River, Pazundaung Creek, and Bago River keeps blocking the navigation channel to the Yangon Port, which also limits the size of vessel calling to Yangon Port. Therefore, studies to understand sediment transport process in Yangon River are required because the economic development of Myanmar highly relies on the Yangon Port. This paper aims to calculate the sediment transport and to predict the riverbed elevation changes in Yangon River by using Bagnold (1966) theory. Calculation result shows that huge difference can be found in the bed load transport between the rainy season and dry season in Yangon River, and thus the sedimentation problem would become more severe in the dry season when the transported sediments are reduced. The estimated sedimentation rate in dry season indicates that the rate of riverbed level rise near the Yangon Port area is about 0.063 m per year, which would lead to approximately 3.15 m rise in the riverbed level in next 50 yrs, considering the same workload of dredging to maintain the navigation channel.

S-Band 300-W GaN HEMT Harmonic-Tuned Internally-Matched Power Amplifier (S-대역 300 W급 GaN HEMT 고조파 튜닝 내부 정합 전력증폭기)

  • Kang, Hyun-Seok;Lee, Ik-Joon;Bae, Kyung-Tae;Kim, Seil;Kim, Dong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.4
    • /
    • pp.290-298
    • /
    • 2018
  • Herein, an S-band internally-matched power amplifier that shows a power capability of 300 W in a Long Term Evolution(LTE) band 7 is designed and fabricated using a CGHV40320D GaN HEMT from Wolfspeed. Based on the nonlinear model, the optimum source and load impedance are extracted from the source-pull and load-pull simulations at the fundamental and harmonic frequencies, and the harmonic impedance tuning circuits are implemented inside a ceramic package. The internally matched power amplifier, which is fabricated using a thin-film substrate with a high relative permittivity of 40 and an RF35TC PCB substrate, is measured at the pulsed condition with a pulse period of 1 ms and a duty cycle of 10%. The measured results show a maximum output power of 257~323 W, a drain efficiency of 64~71%, and a power gain of 11.5~14.0 dB at 2.62~2.69 GHz. The LTE-based measurement shows a drain efficiency of 42~49% and an ACLR of less than -30 dBc(excluding 2.62 GHz) at an average power of 79 W.

Comparative Study on the Bond Strength between Direct Tensile Test and Indirect Tensile Test for Bonded Concrete Overlay (직접인장 및 간접인장 실험방법에 따른 접착식 콘크리트 덧씌우기의 부착강도 비교 고찰)

  • Kim, Young Kyu;Lee, Seung Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1153-1163
    • /
    • 2013
  • Bonded concrete overlay is a favorable maintenance method since the material properties are similar to existing concrete pavements. In addition, bonded concrete overlay has advantage of structural performance based on being bonded together, both for the overlay layer and the existing pavement which perform as one monolithic layer. Therefore, it is important to have a suitable bond strength criteria for long term performance of bonded concrete overlay. This study aimed to investigate the affecting of bond strength on various bond characteristics, and to compare the bond strength between direct tensile test and indirect tensile test due to various conditions such as overlay materials, compressive and flexure strength of existing pavement, and deterioration status of existing pavement. As a result of this study, bond strength occurred by both of direct and indirect tensile test due to monotonic load is highly correlated such as coefficient of determination of 0.75 and P-value of 0.002. However, bond strength by indirect tensile test was relatively higher than bond strength by direct tensile test. It was known that correlation between direct and indirect tensile test was possible to use the characteristics analysis of bond fatigue behavior based on bond strength due to cyclic load which can simulate real field behavior of bonded concrete overlay.

The Effect of Metformin in Non-Obese Women with Polycystic Ovary Syndrome; Pilot Study (비만하지 않은 다낭성난소증후군 환자에서 메트포민 효용성의 예비 연구)

  • Kim, Hyeong-Ok;Kim, Kye-Hyun
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.35 no.3
    • /
    • pp.223-229
    • /
    • 2008
  • Objective: This pilot study was performed to investigate the effect of metformin on insulin resistance, hormone levels, and lipid profiles in non-obese patients with polycystic ovary syndrome. Methods: This study included 16 non-obese patients with polycystic ovary syndrome diagnosed at our hospital from June 2006 to September 2007. Blood samples were collected before and 6 months after metformin treatment for analysis of fasting serum glucose levels, fasting serum insulin levels, a glycemic response to 75 g oral glucose tolerance test (OGTT), and hormonal blood profile including FSH, LH, estradiol, testosterone, free testosterone, serum lipid profiles. Insulin resistance was estimated by calculating fasting glucose/insulin ratio (FGIR), 2 hr glucose/insulin ratio after 75 g glucose load. And we investigated insulin resistance and pancreatic beta cell function by calculating HOMA beta cell function and HOMA IR. Results: After the treatment of metformin, there was significant increase in 2 hr glucose/insulin ratio after 75 g glucose load (p=0.04) and decrease in HOMA IR (p=0.000). But serum lipid profiles did not change significantly. Also the metformin treatment induced a significant reduction in serum free testosterone and LH levels, and LH/FSH ratio (p=0.001, p=0.000, p=0.034). Conclusion: This pilot study showed that metformin might be effective in improving insulin sensitivity, ameliorating hyperandrogenemia in non-obese patients with polycystic ovary syndrome. Further investigations with larger number of patients and long-term observations are necessary to determine the role of metformin.

Behavior Characteristics of Ballasted Track on Asphalt Roadbed Using Real Scale Test (실대형 실험을 통한 아스팔트 노반상 자갈궤도의 거동 특성)

  • Lee, Seonghyeok;Lee, Jinwook;Lee, Hyunmin
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.3
    • /
    • pp.252-260
    • /
    • 2015
  • Ballasted track on an asphalt roadbed can be beneficial for its various effects such as (i) decreasing of roadbed thickness by dispersing train load; (ii) prevention of both strength reduction and weakening in roadbed system by preventing rainwater penetration; and (iii) reducing maintenance cost by preventing roadbed mud-pumping and frostbite. With these beneficial effects, ballasted track on asphalt roadbed has been widely used in Europe and Japan, and relevant research for applying such ballasted track on asphalt roadbed systems in Korea is ongoing. In this study, full-scale static and dynamic train load tests were performed to compare the performance of ballasted track on asphalt roadbed and ballasted track. The optimum thickness levels of asphalt and reinforced roadbeds, corresponding to the design criteria for reinforced roadbed of high-speed railway, was estimated using the FEM program ABAQUS. Test results show that the earth pressure on reinforced roadbed of ballasted track on the asphalt roadbed was relatively low compared with that of simple ballasted track. The elastic and plastic displacements of simple ballasted track on the asphalt roadbed were also lower than those of ballasted track. These test results may indicate that the use of ballasted track on asphalt roadbed is an advantageous system in view of long-term maintenance.

Analysis of Permanent Deformation under Repetitive Load Based on Degraded Secant Modulus (할선탄성계수를 이용한 반복하중 하 지반의 영구변형 해석)

  • Ahn, Jaehun;Oh, Jeongho;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2013
  • The analysis of long-term performance of pavement sections under wheel loads is normally conducted in two separated steps. First the resilient behavior of the pavement is calculated assuming the pavement is a layered or discrete elastic medium, and then the permanent deformation is evaluated based on empirical permanent displacement equations. Material properties required in both steps can be obtained from cyclic triaxial tests, in other words, resilient and permanent deformation tests. While this analytical approach is simple and convenient, it does not consider the modulus degradation caused by cyclic loads, and some types of reinforcements such as geosynthetic cannot be modeled in this type of analysis. A model for degraded secant modulus is proposed and suggested to be used for the analysis of permanent behavior of unpaved roadway sections. The parameter for suggested model can be obtained from cyclic triaxial tests, regular practice in pavement engineering. Examples to estimate the model parameters are presented based on both laboratory permanent deformation test and large-scale plate load test.