본 논문은 학문적인 이해를 기반을 둔 예측을 수행하기 위해 FDNN(: Flood drought index neural network) 알고리즘을 제시한다. 데이터에 의존한 예측이 아닌 학문적인 이해를 기반을 둔 예측을 딥러닝에 적용하기 위해, 알고리즘을 수리, 수문학을 기반으로 구성하였다. 강수량의 입력으로 하천의 유량을 예측하는 모델을 구성하여 K-교차검증을 통해 모델의 성능을 측정한다. 제시한 알고리즘의 성능을 증명하기 위해 시계열 예측에서 가장 많이 사용되는 LSTM(: Long short term memory) 알고리즘의 예측 성능과 비교하여 제시한 알고리즘의 우수성을 나타낸다.
우리나라의 경우 짧은 강우 관측 기간으로 인해 지점빈도해석에 의한 가뭄분석은 불확실성이 크다는 문제가 있어 가뭄에 대한 지역빈도해석의 적용이 필요하다. 본 연구에서는 강우의 경향이나 크기를 고려하기 위해 단기가뭄을 나타내어 줄 수 있는 3개월 이동평균강우량과 장기가뭄을 나타내어 줄 수 있는 12개월 이동평균강우량을 산정한 후, 가뭄분석을 수행하기 위한 가뭄특성변수를 추출하였다. 가뭄특성변수를 이용하여 주성분분석과 군집분석을 수행하여 가뭄의 동질성을 갖는 관측지점들을 구분하였다. 또한, 본 연구에서는 지역별 가뭄빈도해석을 위해 이변량 확률분포함수를 적용하였으며, 가뭄 특성(가뭄 지속기간과 심도)의 상호 관계를 고려하여 지역적 가뭄특성을 종합적으로 판단하였다. 또한 이변량 핵밀도함수의 적용을 통해 가뭄 발생의 분포 및 경향성을 가장 근접하게 나타내어 줄 수 있는 결합 확률밀도함수를 추정하고, 군집지역별 2개월, 5개월, 10개월, 20개월의 가뭄지속기간과 5년, 10년, 20년, 50년, 100년의 재현기간에 따른 지역적 가뭄특성을 분석하였다. 그 결과 금강하류, 영산강의 일부 권역 및 남해안 일대에서 상대적으로 큰 가뭄심도가 발생하는 것으로 나타났다.
Due to global climate change, mega-droughts have occurred frequently. Since long-term droughts make it difficult to secure the water resources, water supply needs to be restricted in a reasonable manner. In the event of limited water supply, the waterworks need to develop a restricted water supply strategy. This study showed that analyzing daily water supply could be used to respond to the first stage of a drought. According to an analysis of Korea's major water authorities, there was about 7~21% of room for daily minimum water supply in case of a drought. Restricting the water supply by lowering pressure is a good strategy for local water authorities with high water leakage rate since leakage is inversely dependent with pressure. For this method, it is necessary to quantify water deficiency and pressure at each node using a simulation. Since DDA-based software is not possible to predict changes in demand at nodes with pressure reduction, WaterGEMS, a PDA software, was used to quantitatively predict water shortages and pressures at each node. Locations where water is deficient need to install booster pumps or to be dispatched with water tank truck and bottled water. Without these support, lowering pressure could not be an option for water works. This paper suggests a method for waterworks to plan a drought by lowering pressure to restrict water supply using daily water supply analysis and PDA based simulation.
가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무엇보다 중요하다. 특히 생 공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.
본 연구에서는 낙동강유역 진동, 현풍, 왜관 지점의 연평균 유량자료에 대하여 다변량 추계학적 모형올 적용하여 가뭄특성을 해석하였다. 추계학적 모형으로는 다변량 자기회귀 (MAR) 모형과 다변량 contemporaneous 자기회귀 (MCAR) 모형올 사용하였으며, 잔차계열의 왜곡도 검사, 계열상관도(correlogram) 등의 적합도 검정을 통하여 MCAR(1) 모형과 MAR(1) 모형올 적정 모형으로 선정하였다. 또한 MCAR(1) 모형과 MAR(1) 모형에 의해 모의발생된 자료 모두 실제자료의 기본적인 통계값과 매우 비슷하게 나타났다. 따라서 모의발생된 다양한 크기의 자료를 통하여 산정된 3개 지점의 재현기간별 가뭄특성치, 예를 들변 가뭄기간, 가뭄부족량, 가뭄강도 둥은 비교적 잘 재현된 것으로 판단된다. 위와 같이 산정된 가뭄특성치는 중.장기간 수자원 공급체계를 위한 계획과 설계에 중요한 정보를 제공할 것으로 기대된다.
투수성이 큰 화산섬인 제주도에서는 땅속으로 함양된 지하수자원이 가장 중요한 수원이므로 지하수의 적정관리가 매우 중요하다. 특히 가뭄시 지하수의 이용은 염수침투를 유발할 수 있으므로 지하수위 강하에 따른 단계별 제한 조치가 마련되어 있다. 농업용 지하수위에 대한 적정 지하수 이용을 위해서는 보다 장기적인 예측을 통해 사전에 대비하는 것이 필요하다. 이에 본 연구에서는 인공신경망 모형을 이용한 지하수위의 월단위예측기법을 개발하였고, 대표적인 관측공에 대해 적용하였다. 월단위 지하수위를 예측한 결과 학습 및 검증기간 모두 예측 성능이 우수한 것으로 분석되었다. 또한 장기예측을 위해서 입력인자로 월단위 지하수위 예측치를 순차적으로 이용하는 연속지하수위예측 모형을 구축하고 수개월 동안 무강수의 극한조건에 대한 지하수위 저하 양상을 분석하였다.
Purpose: This paper presents the effects of soil drought stress during the growing season and pre-harvest period on tree growth and fruit quality of "Yumi" peach, an early season cultivar. Methods: Soil drought stresses were treated with four levels of -30, -50, -60, and -70 kPa during long term (LT) and short term (ST). For LT treatments, soil water was controlled for nine weeks from May 1 to July 5, which was assumed as the full growing season. For ST treatments, soil water was controlled for four weeks from June 10 to July 5, which was assumed as the pre-harvest season. Tree growth and leaf photosynthesis were measured, and fruit characteristics such as fruit weight and diameter, soluble solid and tannin contents, and harvest date were investigated. Results: Soil water deficit treatments caused a significant reduction in tree growth, leaf photosynthesis, and fruit enlargement. LT water stress over -60 kPa during the full growing season caused significant reduction in tree growth, including shoot length, trunk girth, leaf photosynthesis, and fruit enlargement. ST water stress over -60 kPa during the pre-harvest period also induced significant reduction in leaf photosynthesis and fruit enlargement, while tree growth was not reduced. In terms of fruit quality, water stress over -50 kPa significantly reduced fruit weight, increased soluble solid and tannin contents, and delayed harvest time in both LT and ST treatments. Conclusions: As a result, it is assumed that LT water stress over -60 kPa can reduce both tree growth and fruit enlargement, whereas ST water stress over -50 kPa can reduce fruit enlargement without reducing tree growth. From an agricultural perspective, moderate water deficit like -50 kPa treatments could have positive effects, such increased fruit soluble solid contents along with minimal reduction in fruit size.
This study aims to establish the multi-reservoir operation system model in the Upper Mun River Basin which includes 5 main dams namely, Mun Bon (MB), Lamchae (LC), Lam Takhong (LTK), Lam Phraphoeng (LPP), and Lower Lam Chiengkrai (LLCK) Dams. The knowledge and AI technology were applied aiming to develop innovative prototype for SMART dam-reservoir operation in future. Two different sorts of reservoir operation system model namely, Fuzzy Logic (FL) and Constraint Programming (CP) as well as the development of rainfall and reservoir inflow prediction models using Machine Learning (ML) technique were made to help specify the right amount of daily reservoir releases for the Royal Irrigation Department (RID). The model could also provide the essential information particularly for the Office of National Water Resource of Thailand (ONWR) to determine the short-term and long-term water resource management plan and strengthen water security against flood and drought in this region. The simulated results of base case scenario for reservoir operation in the Upper Mun from 2008 to 2021 indicated that in the same circumstances, FL and CP models could specify the new release schemes to increase the reservoir water storages at the beginning of dry season of approximately 125.25 and 142.20 MCM per year. This means that supplying the agricultural water to farmers in dry season could be well managed. In other words, water scarcity problem could substantially be moderated at some extent in case of incapability to control the expansion of cultivated area size properly. Moreover, using AI technology to determine the new reservoir release schemes plays important role in reducing the actual volume of water shortfall in the basin although the drought situation at LTK and LLCK Dams were still existed in some periods of time. Meanwhile, considering the predicted inflow and hydrologic factors downstream of 5 main dams by FL model and minimizing the flood volume by CP model could ensure that flood risk was considerably minimized as a result of new release schemes.
Developing reliable soil moisture prediction techniques at agricultural regions is a pivotal issue for sustaining stable crop productions. In this study, a physically-based SWAP(Soil-Water-Atmosphere-Plant) model was suggested to estimate soil moisture dynamics at the study sites. ROSETTA was also integrated to derive the soil hydraulic properties(${\alpha}$, n, ${\Theta}_r$, ${\Theta}_s$, $K_s$) as the input variables to SWAP based on the soil information(Sand, Silt and Clay-SSC, %). In order to predict the soil moisture dynamics in future, the mid-term TIGGIE(THORPEX Interactive Grand Global Ensemble) and long-term S2S(Subseasonal to Seasonal) weather forecasts were used, respectively. Our proposed approach was tested at the six study sites of RDA(Rural Development Administration). The estimated soil moisture values based on the SWAP model matched the measured data with the statistics of Root Mean Square Error(RMSE: 0.034~0.069) and Temporal Correlation Coefficient(TCC: 0.735~0.869) for validation. When we predicted the mid-/long-term soil moisture values using the TIGGE(0~15 days)/S2S(16~46 days) weather forecasts, the soil moisture estimates showed less variations during the TIGGE period while uncertainties were increased for the S2S period. Although uncertainties were relatively increased based on the increased leading time of S2S compared to those of TIGGE, these results supported the potential use of TIGGE/S2S forecasts in evaluating agricultural drought. Our proposed approach can be useful for efficient water resources management plans in hydrology, agriculture, etc.
가뭄평가 시 단일 수문인자를 활용하여 가뭄지수를 산정하고 가뭄의 출현, 심도 및 지속기간 등을 평가하는 것이 일반적이다. 하지만 가뭄은 여러 요인이 복합적인 연관성을 가지며 나타나는 현상이므로 단일인자로 가뭄을 평가하는 경우 불확실성 및 한계가 존재한다. 이에 따라 다양한 수문기상 특성을 고려할 수 있는 가뭄지수의 개발이 지속적으로 요구되고 있다. 본 연구에서는 강우량 및 토양수분을 이용하여 가뭄을 평가하고자 은닉 마코프 모형(Hidden Markov chain Model)기반의 토양수분 모의기법을 통해 과거(1973-2014년) 토양의 수분함량을 모의하였으며, Copula 함수를 활용하여 강우량과 토양수분을 동시에 고려한 합성가뭄지수를 산정하였다. 본 연구에서 제안된 토양수분산정 모델은 다중 회귀 모형의 모의결과와 비교를 통해 모델의 적합성을 검증하였으며, 가뭄의 지속기간과 심도를 고려하여 이변량 빈도해석을 수행하였다. 이변량 빈도해석결과 2015년 전라북도 지역에 발생하였던 가뭄은 약 20년의 재현기간을 갖는 것으로 분석되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.