DOI QR코드

DOI QR Code

Probabilistic prediction of reservoir storage considering the uncertainty of dam inflow

댐 유입량의 불확실성을 고려한 저수량의 확률론적 예측

  • Kwon, Minsung (Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Park, Dong-Hyeok (Dept. of Civil and Environmental Engineering, Hanyang Univ.) ;
  • Jun, Kyung Soo (Graduate School of Water Resources, Sungkyunkwan Univ.) ;
  • Kim, Tae-Woong (Dept. of Civil and Environmental Engineering, Hanyang Univ.)
  • 권민성 (성균관대학교 수자원전문대학원) ;
  • 박동혁 (한양대학교 대학원 건설환경공학과) ;
  • 전경수 (성균관대학교 수자원전문대학원) ;
  • 김태웅 (한양대학교 공학대학 건설환경플랜트공학과)
  • Received : 2016.04.03
  • Accepted : 2016.05.28
  • Published : 2016.07.30

Abstract

The well-timed water management is required to reduce drought damages. It is also necessary to induce residents in drought-affected areas to save water. Information on future storage is important in managing water resources based on the current and future states of drought. This study employed a kernel function to develop a probabilistic model for predicting dam storage considering inflow uncertainty. This study also investigated the application of the proposed probabilistic model during the extreme drought. This model can predict a probability of temporal variation of storage. Moreover, the model can be used to make a long-term plan since it can identify a temporal change of storage and estimate a required reserving volume of water to achieve the target storage.

가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무엇보다 중요하다. 특히 생 공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.

Keywords

References

  1. Bowman, A. W., and Azzalini, A. (1997). Applied smoothing techniques for data analysis: The kernel approach with S-Plus illustrations. OUP Oxford.
  2. K-water (2013). Operation manual of dam. K-water.
  3. K-water (2016). White paper on drought. K-water.
  4. Lee, D.-R., Moon, J.-W., Lee, D.-H., and Ahn, J. H. (2006). "Development of water supply capacity index to monitor droughts in a reservoir." Journal of Korea Water Resources Association, Vol. 39, No. 3, pp. 199-214. https://doi.org/10.3741/JKWRA.2006.39.3.199
  5. McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." Proceedings of the 8th Conference on Applied Climatology, Boston, MA, USA, Vol. 17, No. 22, pp. 179-183.
  6. Palmer, W.C. (1965). Meteorological drought (Vol. 30). Washington, DC, USA: US Department of Commerce, Weather Bureau.
  7. Park, M.J., Shin, H.J., Choi, Y.D., Park, J.Y., and Kim, S.J. (2011) "Development of a hydrological drought index considering water availability." Journal of the Korean Society of Agricultural Engineers, Vol. 53, No. 6, pp. 165-170. https://doi.org/10.5389/KSAE.2011.53.6.165
  8. Shafer, B.A., and Dezman, L.E. (1982). "Development of a surface water supply index (SWSI) to assess the severity of drought conditions in snowpack runoff areas." Proceedings of the Western Snow Conference, Fort Collins, CO, Vol. 50, pp. 164-175.
  9. Sheffield, J., Wood, E.F., and Roderick, M.L. (2012) "Little change in global drought over the past 60 years." Nature, Vol. 491, No. 7424, pp. 435-438. https://doi.org/10.1038/nature11575
  10. Wand, M.P., and Jones, M.C. (1995). Kernel smoothing. Chapman & Hall, London.
  11. WMO (2009). Experts agree on a universal drought index to cope with climate risks. WMO Press Release No. 872.