Abstract
The well-timed water management is required to reduce drought damages. It is also necessary to induce residents in drought-affected areas to save water. Information on future storage is important in managing water resources based on the current and future states of drought. This study employed a kernel function to develop a probabilistic model for predicting dam storage considering inflow uncertainty. This study also investigated the application of the proposed probabilistic model during the extreme drought. This model can predict a probability of temporal variation of storage. Moreover, the model can be used to make a long-term plan since it can identify a temporal change of storage and estimate a required reserving volume of water to achieve the target storage.
가뭄의 피해를 줄이기 위해서는 시기적절한 용수관리와 지역주민의 절수 유도가 필요하며, 이를 위해서는 가뭄의 현황 및 전망에 대한 정보가 무엇보다 중요하다. 특히 생 공용수를 공급하는 다목적댐의 경우 저수량에 대한 향후 전망은 용수관리를 위한 가장 중요한 정보이다. 이에 본 연구에서는 핵밀도함수를 활용하여 유입량의 불확실성을 고려한 확률론적 저수량 예측 모형을 구축하고, 그 적용성과 활용성을 분석하였다. 확률론적 저수량 예측 모형은 현재의 저수량을 기준으로 시간의 변화에 따른 저수량을 확률적으로 예측할 수 있다. 이를 통해 현재의 가뭄상황에서 향후 저수량의 변화 양상을 파악하여 중장기적인 대응이 가능하고 특정시점의 목표 저수량을 달성하기 위한 용수 비축량을 산정할 수 있어 용수관리에 관한 의사결정을 위한 도구로 활용이 가능할 것으로 판단된다.