Traditional stochastic simulation of hydroclimatological variables often underestimates the variability and correlation structure of larger timescale due to the difficulty in preserving long-term memory. However, the Long Short-Term Memory (LSTM) model illustrates a remarkable long-term memory from the recursive hidden and cell states. The current study, therefore, employed the LSTM model in stochastic generation of hydrologic and climate variables to examine how much the LSTM model can preserve the long-term memory and overcome the drawbacks of conventional time series models such as autoregressive (AR). A trigonometric function and the Rössler system as well as real case studies for hydrological and climatological variables were tested. Results presented that the LSTM model reproduced the variability and correlation structure of the larger timescale as well as the key statistics of the original time domain better than the AR and other traditional models. The hidden and cell states of the LSTM containing the long-memory and oscillation structure following the observations allows better performance compared to the other tested conventional models. This good representation of the long-term variability can be important in water manager since future water resources planning and management is highly related with this long-term variability.
Purpose: This study investigated the correlation between person-centered care (PCC) and nursing service quality of nurses in long-term care hospitals. Methods: The subjects were 114 nurses working in 8 long-term care hospitals. Instruments for evaluating PCC and nursing service quality were used. The data were analyzed by descriptive statistics, two samples-test, one-way ANOVA, Pearson's correlation and Multiple regression. Results: The mean of PCC was $3.25{\pm}0.45$ out of 5 and the nursing service quality was $3.87{\pm}0.40$. There were significant differences in PCC in terms of age and income satisfaction, the application of their opinions, the satisfaction of hospital managers, administrators and nurse managers. There were significant differences in nursing service quality according to age, position, the satisfaction of hospital managers, administrators and nurse managers. Nurses' PCC showed a significant positive correlation with nursing service quality. Factors influencing nursing service quality included PCC, their position and age and the most influencing one was PCC. Conclusion: This study suggests that the PCC is the strongest affecting element to the quality of nursing service in long-term care hospitals. Therefore, the strategies to improve the practice of person-centered care should be carried out to enhance the quality of nursing service.
본 논문에서는 단기 관측자료를 활용하여 장대교량 현장의 기본풍속을 추정하는 방법에 대한 연구를 수행하였다. 기상관측소로부터 거리가 먼 장대교량의 내풍설계시 현장의 기본 풍속을 추정하기 위해 현장의 장기 풍속자료를 통계처리하는 것이 필요하다. 현장에 풍관측탑을 설치하고 단기간의 풍관측 자료를 확보하였고 선형회귀분석 및 MCP 방법을 이용하여 인근 기상관측소와의 상관관계를 분석하였다. 기상관측소의 장기풍자료를 지형보정을 한 후 상관관계식에 의해 현장의 장기 풍속자료를 얻었고 풍속자료의 극치 확률분포 분석에 의해 기본풍속 산정을 할 수 있었다. 연구결과에서는 선형회귀분석의 방법이 MCP 방법에 비해 풍속을 낮게 추정하고 있으며, 향후 여러 현장에서 일련의 상관관계 분석을 수행한다면 종합적으로 두 방법에 의한 기본풍속 산정의 차이를 보다 명확히 보여줄 것이다. 또한, 장기자료의 질 관리가 풍속추정에 매우 중요하다는 것을 보여주고 있다.
One-year-long groundwater-level data have been collected from 18 wells in Cheon-an area. The result of barometric efficiency, autocorrelation, cross-correlation and statistical distribution evaluated from the measurement data shows that groundwater-level measurements from observation wells are the principal source of information about aquifer characteristics. Data from WA-2 has high barometric efficiency as well as steady decreasing auto-correlation coefficient, which means nonleaky confined aquifer, Most aquifers in this study show the unconfined properties so that barometric efficiencies are mostly low and the coefficients of cross-correlation between groundwater-level and precipitation are commonly high. This study showed that the long-term groundwater-level monitoring data without artificial stress such as pumping would give accurate information about aquifer characteristics.
The purpose of this study is to investigate the relationship between post - employment job satisfaction and both short-term (4-12 weeks) and long-term (12+weeks) on-site training. For this purpose, 405 graduates who had completed on-site training (205 short-term, 200 long term) during the school year were surveyed. The results of the comparative analysis of both short-term and long-term on-site training participants are as follows: In both short-term and long-term on-site training, it was found that on-site performance during the school year did not directly affect post-employment job satisfaction. In the case of short-term on-site training participants, job match and organizational commitment were found to have no mediating effect on the correlation between on-site training performance and job satisfaction. On the other hand, in the case of long-term on-site training participants, the analysis showed that job match and organizational commitment had mediating effects on the correlation between on-site training performance and job satisfaction. These effects are not solely attributable to differences in duration of training; the differences in operating systems and the degree of preparation derived from these systems also affect the level of on-site training for students, businesses, and schools. This paper summarizes these findings and suggests the following improvement plans for on-site training in the future: First, short-term on-site training is required to establish a systematic basis in order to enhance students' preparedness level. Second, both short-term and long-term on-site training should improve the skills and field understanding for students' majors through systematic quality management during the training period. Third, it is necessary for universities to increase expectations and quality of short-term on-site training for all involved while simultaneously reducing the gap between educational goals and practice in this field.
This paper presents a method for the regional long-term load forecasting in metropolitan area considering econimic indicator with the assumption that energy demands propoprtionally increases under the economic indicators. For the accurate load forecasting, it is very important to scrutinize the correlation among the regional electric power demands, economic indicator and other characteristics because load forecasting results may vary depending on many different factors such as electric power demands, gross products, social trend and so on. Three steps for the regional long-term load forecasting are microscopically and macroscopically used for the regional long -term load forecasting in order to increase the accuracy and practicality of the results.
In this paper, we propose an improved model to provide users with a better long-term prediction of waterworks operation data. The existing prediction models have been studied in various types of models such as multiple linear regression model while considering time, days and seasonal characteristics. But the existing model shows the rate of prediction for demand fluctuation and long-term prediction is insufficient. Particularly in the deep running model, the long-short-term memory (LSTM) model has been applied to predict data of water purification plant because its time series prediction is highly reliable. However, it is necessary to reflect the correlation among various related factors, and a supplementary model is needed to improve the long-term predictability. In this paper, convolutional neural network (CNN) model is introduced to select various input variables that have a necessary correlation and to improve long term prediction rate, thus increasing the prediction rate through the LSTM predictive value and the combined structure. In addition, a multiple linear regression model is applied to compile the predicted data of CNN and LSTM, which then confirms the data as the final predicted outcome.
Purpose: The purpose of this study is to identify the relationship between professional self-concept and job satisfaction of nurses working in long-term care hospitals and to consider strategies to improve these factors. Methods: Data were collected using structured questionnaires given to 135 nurses working at six long-term care hospitals in C City. The data were analyzed with SPSS 23.0 by descriptive statistics, Cronbach's α, t-test, one-way ANOVA, a Scheffé test, and with Pearson's correlation coefficient. Results: The average score for professional self-concept was 2.78 points (out of 4 points), and the average score for job satisfaction was 3.11 points (out of 5 points). Significant differences were found for professional self-concept according to age, marriage status, total work experience, number of patients per nurse, and position, while job satisfaction showed significant differences depending on age and the number of patients in the ward. Professional self-concept and job satisfaction showed a significant positive correlation (r=.46, p<.001). Conclusion: In long-term care hospitals, it is necessary to provide education programs about nursing practice, communication, and leadership to enhance the professional self-concept of nurses. With regard to job satisfaction for nurses, it is imperative to improve the work environment of long-term care hospitals.
This paper presents the results from the comparison analysis and evaluation between the air pollutant dispersion modeling results and the observation data in the area within a 10 km radius from the Boryong thermal power plants. The observation data used in this study were the air pollutant concentrations which had been continuously measured from 8 locations around the Boryong power plants by TMS(tele-monitoring system) for 3 months from September to November, 1996. The short-term and long-term predictions were carried out using ISC3 model and LPDM(Lagrangian Panicle Dispersion Model). The results of ISC3 modeling in a short-term showed highly as 0.7 in a correlation coefficient, but in a long-term showed just 0.54. On the other hand, LPDM showed 0.78 in a correlation coefficient for a long-term, but in a short-term showed highly value than the observation concentrations.
Kwon, Yong Wonn;Moon, Won-Jin;Park, Mina;Roh, Hong Gee;Koh, Young Cho;Song, Sang Woo;Choi, Jin Woo
Investigative Magnetic Resonance Imaging
/
제22권3호
/
pp.158-167
/
2018
Purpose: To investigate the surgical, perfusion, and molecular characteristics of glioblastomas which influence long-term survival after treatment, and to explore the association between MR perfusion parameters and the presence of MGMT methylation and 1p/19q deletions. Materials and Methods: This retrospective study was approved by our institutional review board. A total 43 patients were included, all with pathologic diagnosis of glioblastoma with known MGMT methylation and 1p/19q deletion statuses. We divided these patients into long-term (${\geq}60\;months$, n = 7) and short-term (< 60 months, n = 36) survivors, then compared surgical extent, molecular status, and rCBV parameters between the two groups using Fisher's exact test or Mann-Whitney test. The rCBV parameters were analyzed according to the presence of MGMT methylation and 1p/19q deletions. We investigated the relationship between the mean rCBV and overall survival using linear correlation. Multivariable linear regression was performed in order to find the variables related to overall survival. Results: Long-term survivors (100% [7 of 7]) demonstrated a greater percentage of gross total or near total resection than short-term survivors (54.5% [18 of 33]). A higher prevalence of 1p/19q deletions was also noted among the long-term survivors (42.9% [3 of 7]) than the short-term survivors (0.0% [0 of 36]). The rCBV parameters did not differ between the long-term and short-term survivors. The rCBV values were marginally lower in patients with MGMT methylation and 1p/19q deletions. Despite no correlation found between overall survival and rCBV in the whole group, the short-term survivor group showed negative correlation ($R^2=0.181$, P = 0.025). Multivariable linear regression revealed that surgical extent and 1p/19q deletions, but not rCBV values, were associated with prolonged overall survival. Conclusion: While preoperative rCBV and 1p/19q deletion status are related to each other, only surgical extent and the presence of 1p/19q deletion in GBM patients may predict long-term survival.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.