• Title/Summary/Keyword: Long-span Bridge

Search Result 536, Processing Time 0.022 seconds

Application of Vision-based Measurement System for Estimation of Dynamic Characteristics on Hanger Cables (행어케이블의 동특성 추정을 위한 영상계측시스템 적용)

  • Kim, Sung-Wan;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1A
    • /
    • pp.1-10
    • /
    • 2012
  • Along with the development of coasts, islands and mountains, the demand of long-span bridges increases which, in turn, brings forth the construction of cable-supported bridges like suspension and cable-stayed bridges. There are various types of statically indeterminate structures widely applied that supported the main girder with stay cables, main cables, hanger cables with aesthetic structural appearance. As to the cable-supported bridges, the health monitoring of a bridge can be identified by measuring tension force on cable repeatedly. The tension force on cable is measured either by direct measurement of stress of cable using load cell or hydraulic jack, or by vibration method estimating tension force using cable shape and measured dynamic characteristics. In this study, a method to estimate dynamic characteristics of hanger cables by using a digital image processing is suggested. Digital images are acquired by a portable digital camcorder, which is the sensor to remotely measure dynamic responses considering convenient and economical aspects for use. A digital image correlation(DIC) technique is applied for digital image processing, and an image transform function(ITF) to correct the geometric distortion induced from the deformed images is used to estimate subpixel. And, the correction of motion of vision-based measurement system using a fixed object in an image without installing additional sensor can be enhanced the resolution of dynamic responses and modal frequencies of hanger cables.

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Evaluation of Static and Fatigue Performances of Decks Reinforced with GFRP Rebar for Reinfocement Ratio (GFRP 보강근으로 보강된 바닥판의 보강비에 따른 정적 및 피로성능 평가)

  • You, Young-Jun;Park, Young-Hwan;Choi, Ji-Hun;Kim, Jang-Ho Jay
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.491-497
    • /
    • 2014
  • The corrosion of steel reinforcement in reinforced concrete bridge decks significantly affects the degradation of the capacity. Due to the advantageous characteristics such as high tensile strength and non-corrosive property, fiber reinforced polymer (FRP) has been gathering much interest from designers and engineers for possible usage as a alternative reinforcement for a steel reinforcing bar. However, its application has not been widespread, because there data for short- and long-term performance data of FRP reinforced concrete members are insufficient. In this paper, seven full-scale decks with dimensions of $4000{\times}3000{\times}240mm$ were prepared and tested to failure in the laboratory. The test parameter was the bottom reinforcement ratio in transverse direction. The decks were subjected to various levels of concentrated cyclic load with a contact area of $577{\times}231mm$ to simulate the vehicle loading of DB-24 truck wheel loads acting on the center span of the deck. It was observed that the glass FRP (GFRP) reinforced deck on a restraint girder is strongly effected to the level of the applied load rather than the bottom reinforcement ratio. The study results showed that the maximum load less than 58% of the maximum static load can be applied to the deck to resist a fatigue load of 2 million cycles. The fatigue life of the GFRP decks from this study showed the lower and higher fatigue performance than that of ordinary steel and CFRP rebar reinforced concrete deck. respectively.

A Study on Estimation of Failure Probability of Allowable Stress Design using Reliability Analysis to the Bearing Capacity the Deep Water Depth Large-diameter Drilled Shaft (대수심 대구경 현장타설말뚝의 지지력에 대한 신뢰성 해석을 이용한 허용응력 설계의 파괴확률 평가 연구)

  • Han, Yushik;Lee, Yunkyu;Choi, Yongkyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.43-51
    • /
    • 2014
  • A Large-diameter drilled shaft of deep water depth composite foundation supporting a high rise pylon of the test designed super long span bridge was designed by allowable stress design method and failure probability through reliability analysis to bearing capacity was estimated. The allowable stress design results for the bearing capacity of a drilled shaft were analyzed by reliability analysis and the probability of failure shows 0.12 % in case of CFEM, 0.0002 % in case of Korea Highway Corporation criterion, and 0.003 % in case of structure foundation design criterion. In the allowable stress design, the bearing capacity of a large-diameter drilled shaft was obtained by applying to safety factor 3 and reliability analysis for the results was done. If the failure probability suggested by AASHTO(2007) specification is set to 0.02 %, the socketed length of a drilled shaft shows an increase of 25 % in CFEM, decrease of 60 % in KHCC, and decrease of 89 % in SFDC.

Reliable multi-hop communication for structural health monitoring

  • Nagayama, Tomonori;Moinzadeh, Parya;Mechitov, Kirill;Ushita, Mitsushi;Makihata, Noritoshi;Ieiri, Masataka;Agha, Gul;Spencer, Billie F. Jr.;Fujino, Yozo;Seo, Ju-Won
    • Smart Structures and Systems
    • /
    • v.6 no.5_6
    • /
    • pp.481-504
    • /
    • 2010
  • Wireless smart sensor networks (WSSNs) have been proposed by a number of researchers to evaluate the current condition of civil infrastructure, offering improved understanding of dynamic response through dense instrumentation. As focus moves from laboratory testing to full-scale implementation, the need for multi-hop communication to address issues associated with the large size of civil infrastructure and their limited radio power has become apparent. Multi-hop communication protocols allow sensors to cooperate to reliably deliver data between nodes outside of direct communication range. However, application specific requirements, such as high sampling rates, vast amounts of data to be collected, precise internodal synchronization, and reliable communication, are quite challenging to achieve with generic multi-hop communication protocols. This paper proposes two complementary reliable multi-hop communication solutions for monitoring of civil infrastructure. In the first approach, termed herein General Purpose Multi-hop (GPMH), the wide variety of communication patterns involved in structural health monitoring, particularly in decentralized implementations, are acknowledged to develop a flexible and adaptable any-to-any communication protocol. In the second approach, termed herein Single-Sink Multi-hop (SSMH), an efficient many-to-one protocol utilizing all available RF channels is designed to minimize the time required to collect the large amounts of data generated by dense arrays of sensor nodes. Both protocols adopt the Ad-hoc On-demand Distance Vector (AODV) routing protocol, which provides any-to-any routing and multi-cast capability, and supports a broad range of communication patterns. The proposed implementations refine the routing metric by considering the stability of links, exclude functionality unnecessary in mostly-static WSSNs, and integrate a reliable communication layer with the AODV protocol. These customizations have resulted in robust realizations of multi-hop reliable communication that meet the demands of structural health monitoring.

The fracture resistance of heat pressed ceramics with wire reinforcement (금속선 강화에 따른 열 가압 도재의 파절저항)

  • Jo, Deuk-Won;Dong, Jin-Keun;Oh, Sang-Chun;Kim, Yu-Lee
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.2
    • /
    • pp.191-198
    • /
    • 2009
  • Statement of problem: Ceramics have been important materials for the restoration of teeth. The demands of patients for tooth-colored restorations and the availability of various dental ceramics has driven the increased use of new types of dental ceramic materials. Improved physical properties of theses materials have expanded its use even in posterior crowns and fixed partial dentures. However, ceramic still has limitation such as low loading capability. This is critical for long-span bridge, because bridge is more subject to tensile force. Purpose: The wire reinforced ceramic was designed to increase the fracture resistance of ceramic restoration. The purpose of this study was to evaluate the fracture resistance of wire reinforced ceramic. Material and methods: Heat pressed ceramic(ingot No.200 : IPS Empress 2, Ivoclar Vivadent, Liechtenstein) and Ni-Cr wire(Alfa Aesar, Johnson Matthey Company, USA) of 0.41 mm diameter were used in this study. Five groups of twelve uniform sized ceramic specimens(width 4 mm, thickness 2 mm, length 15 mm) were fabricated. Each group had different wire arrangement. Wireless ceramic was used as control group. The experimental groups were divided according to wire number and position. One, two and three strands of wires were positioned on the longitudinal axis of specimen. In another experimental group, three strands of wires positioned on the longitudinal axis and five strands of wires positioned on the transverse axis. Three-point bending test was done with universal testing machine(Z020, Zwick, Germany) to compare the flexural modulus, flexural strength, strain at fracture and fracture toughness of each group. Fractured ceramic specimens were cross-sectioned with caborundum disc and grinded with sandpaper to observe interface between ceramic and Ni-Cr wire. The interface between ceramic and Ni-Cr wire was analyzed with scanning electron microscope(JSM-6360, JEOL, Japan) under platinum coating. Results: The results obtained were as follows: 1. The average and standard deviation in flexural modulus, flexural strength and fracture toughness showed no statistical differences between control and experimental groups. However, strain was significantly increased in wire inserted ceramics(P<.001). 2. Control group showed wedge fracture aspects across specimen, while experimental groups showed cracks across specimen. 3. Scanning electron microscopic image of cross-sectioned and longitudinally-sectioned specimens showed no gap at the interface between ceramic and Ni-Cr wire. Conclusion: The results of this study showed that wire inserted ceramics have a high strain characteristic. However, wire inserted ceramics was not enough to use at posterior area of mouth in relation to flexural modulus and flexural strength. Therefore, we need further studies.