• Title/Summary/Keyword: Long-period tide

Search Result 37, Processing Time 0.025 seconds

Periodic characteristics of long period tidal current by variation of the tide deformation around the Yeomha Waterway (염하수로 인근에서 조석 변형과 장주기 조류성분의 변동 특성)

  • Song, Yong-Sik;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.23 no.5
    • /
    • pp.393-400
    • /
    • 2011
  • The mass transport is very complicated at the area which has the macro tide and complex geometry such as Gyeonggi bay. Especially, the long period current has a strong influence on the estuarine ecosystem and the long-term distribution of substances. The long period current is caused by several external forcing, whose unique characteristic varies spatially and temporally. The variation characteristics of long period current is analysed and its generation mechanism is studied. The tidal nonlinear constituents such as overtide and compound tide are generated due to nonlinear interaction and it causes mean sea level setup. The tidal wave propagating up into estuary is transformed rapidly by decrease of cross-sectional area and depth. Therefore the mean sea level is getting rise toward upriver. The high and low tide level is similar between down-river(Incheon) and up-river(Ganghwa) during neap tide when the tidal deformation is decreased. The tidal phase difference between two tidal stations causes a periodic fluctuation of sea level difference. The low water level of Ganghwa station during spring tide does not descend under EL(-)2.5 m, but the low water level of Incheon fall down under EL(-)4.0 m. The variation of tidal range and its sea level are increased during spring tide. It is found that the long period current $M_{sf}$ is quite similar to that of sea level difference between the two tidal stations. It means that the sea surface inclination caused by the spatial difference of tidal deformation is important forcing for the generation of long period current.

Time-series Analysis of Seawater Temperature in the Garolim Bay, the West Coast of Korea (서해 가로림만 수온의 시계열 분석)

  • Yang, Joon-Yong;Cho, Sunghee;Lee, Joon-Soo;Han, Changhoon;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.30 no.7
    • /
    • pp.585-595
    • /
    • 2021
  • We used seawater temperature data, measured in the Garolim Bay, to analyze temperature variation on an hourly and daily basis. Lagrange's interpolation using before and after data was applied to restore nonconsecutive missing temperature data. The estimated error of the data restoration was 0.11℃. Spectral analyses of seawater temperature showed significant periodicities of approximately 12.4 h (semidiurnal tide) and 15.0 d (long-period tide), which is close to those of M2 and Mf partial tides. Variation in seawater temperature was correlated more with tidal height than with air temperature around the Garolim Bay. In June and December, when the seawater temperature difference between the inside and outside of the Garolim Bay was very large, the periodicities of 12.4 h and 15.0 d were highly prominent. These results indicate that the exchange of seawater between the inside and outside of the Garolim Bay induced variations in seawater temperature owing to tide. Understanding temperature variation because of tide helps to prevent abnormal mortality of cultured fish and to predict seawater temperature in the Garolim Bay.

A Study on Standing Crops in Phragmitis communis Communities and their Environmental Factors (갈대군락의 현존량과 환경요인에 관한 연구)

  • 김철수
    • Journal of Plant Biology
    • /
    • v.18 no.3
    • /
    • pp.129-134
    • /
    • 1975
  • It was studied of relation between biomass of reed communities (Phragmitis communis) and several environmental factors concerned with such as chlor ine, pH, humus content in soil and depth of seawater submerged. Two sites where were the different geographical conditions were set up. One site had two plots: H plot, at theshallows of seawater, was not submerged except at full tide or at heavy rainfall, and M plot, at medium depth of seawater, submerged at every common tide at inside of a bank along the west seashore of Mu-An-peninsula. The other site also two plots: M' plot, at medium depth, submerged about 10 hours at each tide, and L plot, at deep seawater submerged every tims at tide at the outside of a bank along the eastside estuary of Youngsan river. Maximum standing crop of the reed community was shown on 25th of June: biomass at H M, M' and L plot were respectively 4.65, 3.60, 0.98, and 0.67 kg dry weight per $m^2$. Density of individual at H, M, M' and L plot was 67, 78, 244 and 333 plants per $m^2$. Net production of the terrestrial parts of rred community on the outside of the bank were lesser as much as a sixth than that on inside, but the density of the plant on outside of the bank was higher as much 4 or 5 times than that on inside. It was assumed that the growth of reed plant was inhibited by high chlorine, high pH, less humus in soil and submergence of seawater for long period.

  • PDF

MASS MORTALITYS OF OYSTER DUE TO RED TIDE IN JINHAE BAY IN 1978 (1978년 진해만 적조와 양식굴의 대량폐사)

  • CHO Chang Hwan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.12 no.1
    • /
    • pp.27-33
    • /
    • 1979
  • In early August 1978, a huge red tide occurred off Chilcheon Is, , at the mouth of Jinhae Bay. It expanded rapidly into the central part and then soon covered all the bay except the innermost part of the bay. After staying for a week it disappeared, and thereafter several small scale red tides partially occurred and disappeared untill the end of August. It differed from the red tides hitherto recorded from this bay in respect of the dominant plankter, the geographical extent and the severe damaging effect to local oyster resources. During the red tide period, nevertheless, no oyster damage was found. In September, however, oyster mortailty was found from all rafts and longlines in the bay. Except the inner most part of the bay the oyster farms were completely destroyed. Of the oyster Production in the winter 1978, $96\%$ of an estimated yield of 5,879 tons (shucked meat) was lost and it was estimated to be 2,275 million won, equivalent to $US\$$ 4.55 million. The dominant species was a dinoflagellate, Ceratium fusus and it constituted about $45\%$ of the total phytoplankton. Cell count showed $7.0\times10^4\;cells/\iota$ and chlorophyll-a, $50mg/m^3$ during red tide peak. No oxygen was found ill the bottom waters in September. Sulphides in bottom waters and in the superficial mud increased to 15 and 8-fold respectively in September compared with July ana August. Precipitation from January to May of 1978 was about a third in comparison with the past ten years average but rainfall ill June was two and half-fold more than normal year, and thereafter drought persisited till September Air and water temperatures were also higher, and sunny days continued for a long time without strong winds. Therefore, water was calm for a long time after the red tide extinguished. The result indicated that the occurrence of the Ceratium red tide occurred in that year which was characterized by the combination of the formation of almost anoxic bottom water before the red tide occurrence, high air temperature and the calmness after a great quantity of rainfall in June. The mass mortality of oysters was presumed not to be directly related with the red tide but with the depression of dissolved oxygen in the environmental waters at the bottom due to settling of the red tide organisms.

  • PDF

Nitrate uptake of the red tide dinoflagellate Prorocentrum micans measured using a nutrient repletion method: effect of light intensity

  • Lee, Kyung Ha;Jeong, Hae Jin;Kim, Hye Jeong;Lim, An Suk
    • ALGAE
    • /
    • v.32 no.2
    • /
    • pp.139-153
    • /
    • 2017
  • The ability of a red tide species to take up nutrients is a critical factor affecting its red tide dynamics and species competition. Nutrient uptake by red tide species has been conventionally measured by incubating nutrient-depleted cells for a short period at 1 or 2 light intensities. This method may be applicable to certain conditions under which cells remain in oligotrophic water for a long time and high nutrients are suddenly introduced. Thus, a new method should be developed that can be applicable to the conditions under which cells are maintained in eutrophicated waters in healthy conditions and experience light and dark cycles and different light intensities during vertical migration. In this study, a new repletion method reflecting these conditions was developed. The nitrate uptake rates of the red tide dinoflagellate Prorocentrum micans originally maintained in nitrate repletion and depletion conditions as a function of nitrate concentration were measured. With increasing light intensity from 10 to $100{\mu}E\;m^{-2}s^{-1}$, the maximum nitrate uptake rate ($V_{max}$) of P. micans increased from 3.6 to $10.8 pM\;cell^{-1}d^{-1}$ and the half saturation constant ($K_{s-NO3}$) increased from 4.1 to $6.9{\mu}M$. At $20{\mu}E\;m^{-2}s^{-1}$, the $V_{max}$ and $K_{s-NO3}$ of P. micans originally maintained in a nitrate repletion condition were similar to those maintained in a nitrate depletion condition. Thus, differences in cells under nutrient repletion and depletion conditions may not affect $K_{s-NO3}$ and $V_{max}$. Moreover, different light intensities may cause differences in the nitrate uptake of migratory phototrophic dinoflagellates.

Characteristic Analysis of the Tidal Residuals' Mid/Long-period Components Using a Wavelet Method (웨이블릿방법을 이용한 조위편차 성분의 중·장주기 특성 분석)

  • Kang, Ju Whan;Kim, Yang-Seon;Shim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.4
    • /
    • pp.200-206
    • /
    • 2013
  • Fourier analysis and a wavelet method were carried out to elucidate the characteristics of tidal residual components in coastal waters. The result of Fourier analysis shows tide-induced and monsoon-induced residuals are conspicuous at the short period and mid period, respectively. The tidal residuals were decomposed by period from 3 hours to 8 months and the characteristics of their components were shown by reconstituting them with short periods less than 24 hours, mid-periods between 1 day and 16 days and long periods longer than 1 month. The tidal residuals in the short period, i.e., tide-induced components, being based on the tidal elevation prediction errors, appear in the West Sea with high tidal ranges and do not have much seasonal fluctuation. Additionally, the period of typhoon induced surge ranges more or less than 12 hours. The mid-period components were clearly generated mainly in the West Sea during the winter and largely affected by monsoon. Accordingly, the pure surge height components were concentrated on the mid-period and had clear features for each coastal waters. The long period components show similar characteristics at all stations and are considered to stem from variations of mean sea levels.

A Study on the Characteristics of Summer Water Temperature Fluctuations by Spectral Analysis in Coast of Korea in 2016 (스펙트럼 분석을 통한 2016년 하계 한국연안의 수온변동 특성에 관한 연구)

  • Seo, Ho-San;Jeong, Yong-Hyun;Kim, Dong-Sun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.2
    • /
    • pp.186-194
    • /
    • 2020
  • In this study, spectral analysis was conducted to identify environmental factors af ecting short-term changes in water temperature in the East, West and South coasts of Korea. The data used in the spectrum analysis is the 2016 summer water temperature, air temperature, tide level and wind data provided by Korea Hydrographic & Oceanographic Agency. In power spectrum results, peaks of water temperature and tide level were observed at same periods in West Sea (Incheon, Pyeungteak, Gunsan and Mokpo) and South Sea (Wando, Goheung, Yeosu, Tongyeong and Masan) where mean tidal range was more than 100 cm. On the other hand, periodicity of water temperature did not appear in East Sea and Busan where the mean tidal range was small. Coherence analysis showed that water temperature was highly correlated with tide in West Sea and three stations(Wando, Goheung and Tongyeong) of South Sea. Especially, correlation between water temperature and tide level in Wando and Tongyeong presented 0.96 at semi-diurnal period. Water temperature in Yeosu seems to have influenced by tide and inflow of fresh water. In Masan, water temperature is influenced by south wind, tide and inflow of fresh water. In East Sea, influence of tide on water temperature is small due to current and small tidal range. As a result of comparing the time series graph, stations where the correlation between water temperature and tide is high show that relatively cold water was inputted at flood tide and flow out at ebb tide. short-term variation of water temperature was affected by tide, but long-term variation over a month was affected by air temperature.

A Study on the Earth Tide Variations by ET Gravimeter (ET 중력계에 의한 기조력 변화 연구)

  • Park, Jung Hwan;Han, Uk
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.141-147
    • /
    • 1998
  • Earth tide observations were taken at AMIST observatory in Seoul by LaCoste-Romberg ET gravimeter from September 2 to 16, 1997 for determining the gravimetric factor ($\delta$) and analyzing the tidal components. Meter drifts were corrected by regression and then denoised by threshholding wavelet, a data processing tool. The mean value of $\delta$ is 1.2 and the mean phase lag of & ($M_2$, $S_2$) and & $K_1$, $O_1$) is $0.07{\pm}0.03^{\circ}$ and $0.08{\pm}0.07^{\circ}$ by analyzing the observed earth tides. For yielding measurements of gravity accurate to about 0.01 mgal, the Earth tide observations are required by ET meter. The tidal variations are due to the planet's distance and zenith angle. With the exception of Earth-Moon and Earth-Sun mechanism, the possible causes of tidal variations are tectonical, meterological and hydrological perturbations. The long period and broad observations are required for determining the state of art gravimetric factor in Korea.

  • PDF

Sea-Level Trend at the Korean Coast

  • Cho, Kwangwoo
    • Journal of Environmental Science International
    • /
    • v.11 no.11
    • /
    • pp.1141-1147
    • /
    • 2002
  • Based on the tide gauge data from the Permanent Service for Meau Sea Level (PSMSL) collected at 23 locations in the Korean coast, the long-term sea-level trend was computed using a simple linear regression fit over the recorded length of the monthly mean sea-level data. The computed sea-level trend was also corrected for the vertical land movement due to post glacial rebound(PGR) using the ICE-4G(VM2) model output. It was found that the PGR-corrected sea-level trend near Korea was 2.310 $\pm$ 2.220 mm/yr, which is higher than the global average at 1.0∼2.0mm/yr, as assessed by the Intergovernmental Panel on Climate Change(IPCC). The regional distribution of the long-term sea-level trend near Korea revealed that the South Sea had the largest sea-level rise followed by the West Sea and East Sea, respectively, supporting the results of the previous study by Seo et al. However, due to the relatively short record period and large spatial variability, the sea-level trend from the tide gauge data for the Korean coast could be biased with a steric sea-level rise by the global warming during the 20th century.

Decomposition of Wave Components in Sea Level Data using Discrete Wavelet Transform (이산형 웨이블릿 변환을 통한 조위 자료 내 파고 성분 분리)

  • Yoo, Younghoon;Lee, Myungjin;Lee, Taewoo;Kim, Soojun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.365-373
    • /
    • 2019
  • In this study, we investigated the effect of wave height in coastal areas using discrete wavelet transform in Taehwa river basin in Ulsan. Through the decomposition result of tide data using daubechies level 7 wavelet and Curve Fitting Function, we confirmed that detail components of d3 and d4 were semidiurnal and diurnal components and approximation component(a6) was the long period of lunar fortnight constituent. The decomposed tide data in six level was divided into tide component with periodicity and wave component with non-periodicity using autocorrelation function and fourier transform. Finally, we confirmed that the tide component is consisted 66% and wave component is consisted 34%. So, we quantitatively assessed the effect of wave on coastal areas. The result could be used for coastal flood risk management considering the effect of wave.