• Title/Summary/Keyword: Long-Term Correction

Search Result 258, Processing Time 0.023 seconds

A Study on the Accommodative Astigmatism of Near Vision (근거리 주시 시 조절성 난시에 대한 연구)

  • Lee, Hark-Jun
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.327-331
    • /
    • 2011
  • Purpose: The purpose of this study was an accurate grasp of the astigmatic change due to eyes accommodation on near vision and suggested problems occurring accommodative astigmatism using near glasses. Methods: 154 subjects(308eyes) from 20 to 40 years selected for this study who had many opportunity of near vision. First, far vision corrective refraction measured using the phoropter, and then both eyes opened simultaneously for maintaining the function of binocular put away dot chart 40 cm. One eye was fogging and the other eye measured near vision astigmatism axis and degrees astigmatism using cross cylinder, and then compared with far astigmatism. Results: Increased degree of astigmatism persons on near vision more than decreased or did not changed degree of astigmatism persons, which could affect visual acuity more than 0.75 diopters in 30 eyes with an increase of 9.7% of total subjects. Direct astigmatism and oblique astigmatism were increased on near vision. Astigmatic axes were rotated base in direction on both eyes and 66.9% of subjects were more than ${\pm}$5$^{\circ}$ rotation. Due to the rotation axis of astigmatism, residual astigmatism is expected to occur and expect to adversely affect the eyes. Conclusions: Long-term using the glasses without correction of increased astigmatic and rotated axis on near vision should occur new residual astigmatism and increase the asthenopia also. Considered to be taken astigmatic change on near vision during near refraction examination.

Development of Precise Geoid Model in Jeju Island (제주도 지역의 정밀지오이드 모델 개발)

  • Lee, Dong-Ha;We, Gwang-Jae;Huang, He;Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.26 no.1
    • /
    • pp.51-61
    • /
    • 2008
  • The determination of precise geoid model for the Jeju island is needed to minimize the effect of different vertical datums. This study describes the development of gravimetric geoid model referred to GRS80 reference surface for the area of Jeju island. We used ECM96 up to degree and order 360 as a reference model and added the terrain and the residual gravity effects to the reference model. After then 17 GPS/Levelling data were used to correct the difference between the GPS/Levelling-derived geoid heights and gravimetric geoid heights. The least square collocation was applied to derive the correction and the grid values. The final precise geoid model(Jeju_GEOID07) that consist of $0.75'{\times}1'$(about $1.4km{\times}1.5km)$ grid interval was obtained in the region of $33^{\circ}{\sim}33.8^{\circ}N$ and $125.8^{\circ}{\sim}127.2^{\circ}E$. Concerning this works, the precise geoid for the Korean peninsula should be determined by integrating the different geoid developed for the peninsula and Jeju island. It is also need to integrate the vertical datum using long-term tide and GPS observations.

Long-term prediction of streamflow for water resource management in Geumho River watershed (중장기 하천유량 관리를 위한 금호강 유역의 유출량 예측)

  • Kim, Han Na;Park, Jung Eun;Kang, Shin Uk;Lee, Eul Rae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.416-416
    • /
    • 2015
  • 기후변화는 미래 강수량 변동을 야기하여 하천유량 관리에 큰 영향을 미칠 것으로 예상하고 있다. 이에 본 연구에서는 기후변화에 따른 중장기 하천유량 관리를 위하여 금호강 유역을 대상으로 SWAT 모형을 이용하여 중장기 하천유량을 예측하였다. 임하댐 상류지역의 2008~2012년 유량자료에 대하여 보정 완료된 SWAT 모형을 기반으로, 지역기후모형(RCM)인 HadGEM3-RA모형을 활용한 IPCC 제5차 보고서 RCP 4.5, RCP 8.5 시나리오를 적용하였다. 금호강 표준유역별 기후변화에 의한 영향을 모의하기 위하여 편이보정(Bias Correction)방법을 적용하였으며, 금호강 유역 내 과거 30년(1975~2005년, Baseline) 기상자료와 비교하여 통계적인 유사성을 가지도록 보정을 실시하였다. 기후변화 시나리오 적용결과는 S1(2011~2040년), S2(2041~2070년), S3(2071~2099년)으로 분할하여 월별, 계절별, 연도별 미래 강수량과 기온을 분석하였다. 분석 결과, RCP 4.5 시나리오의 경우 봄철(3~5월)의 강수량은 기준년도에 비해 약 57%가 증가하였으나, 가을철(6~8월)에는 7.9% 감소하였으며, 첨두 강수시기는 8~9월에서 6~7월로 이동하였다. 평균기온은 각 구분 시기별 $0.2^{\circ}C$, $1.1^{\circ}C$, $1.8^{\circ}C$ 정도 상승할 것으로 예측되었다. RCP 8.5 시나리오에서는 기준년도 대비 강우량은 봄철에 61% 증가, 가을철에는 14.9% 감소하는 것으로 모의되었다. 평균기온은 약 $0.4^{\circ}C$, $2.1^{\circ}C$, $4.2^{\circ}C$ 정도 상승하는 것으로 나타났다. 기후변화에 따른 유출량 결과 비교는 2001~2010년을 기준으로 하였으며, RCP 4.5 시나리오에서는 S1, S2, S3 시기별 각각 -10.9%, -7%, -3.6% 감소하였으며, RCP 8.5 시나리오에서는 약 -12.3%, 4.9%, -1.2% 변동하는 것으로 나타냈다. 금호강 유역 전반에 걸쳐 유출량이 감소하는 추세를 보였으며, 특히 본류에 비해 지류유역의 건천화가 심해지는 양상을 보였다. 또한 현재에 비해 여름철 유출패턴 시기가 앞당겨져 봄철 유량이 증가하고 겨울철에 감소하는 경향을 보이고 있다. 기후변화로 인한 수문패턴의 변화로 현재 하천유량관리의 변화가 필요할 것으로 판단되며, 향후 본 연구결과를 바탕으로 물수지 분석을 추가하여 유지유량 만족을 위한 해당유역의 이수기 유량관리 방안 연구를 수행할 예정이다.

  • PDF

Current Status and Results of In-orbit Function, Radiometric Calibration and INR of GOCI-II (Geostationary Ocean Color Imager 2) on Geo-KOMPSAT-2B (정지궤도 해양관측위성(GOCI-II)의 궤도 성능, 복사보정, 영상기하보정 결과 및 상태)

  • Yong, Sang-Soon;Kang, Gm-Sil;Huh, Sungsik;Cha, Sung-Yong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.5_2
    • /
    • pp.1235-1243
    • /
    • 2021
  • Geostationary Ocean Color Imager 2 (GOCI-II) on Geo-KOMPSAT-2 (GK2B)satellite was developed as a mission successor of GOCI on COMS which had been operated for around 10 years since launch in 2010 to observe and monitor ocean color around Korean peninsula. GOCI-II on GK2B was successfully launched in February of 2020 to continue for detection, monitoring, quantification, and prediction of short/long term changes of coastal ocean environment for marine science research and application purpose. GOCI-II had already finished IAC and IOT including early in-orbit calibration and had been handed over to NOSC (National Ocean Satellite Center) in KHOA (Korea Hydrographic and Oceanographic Agency). Radiometric calibration was periodically conducted using on-board solar calibration system in GOCI-II. The final calibrated gain and offset were applied and validated during IOT. And three video parameter sets for one day and 12 video parameter sets for a year was selected and transferred to NOSC for normal operation. Star measurement-based INR (Image Navigation and Registration) navigation filtering and landmark measurement-based image geometric correction were applied to meet the all INR requirements. The GOCI2 INR software was validated through INR IOT. In this paper, status and results of IOT, radiometric calibration and INR of GOCI-II are analysed and described.

Estimation of reflectivity-rainfall relationship parameters and uncertainty assessment for high resolution rainfall information (고해상도 강수정보 생산을 위한 레이더 반사도-강수량 관계식 매개변수 보정 및 불확실성 평가)

  • Kim, Tae-Jeong;Kim, Jang-Gyeong;Kim, Jin-Guk;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.5
    • /
    • pp.321-334
    • /
    • 2021
  • A fixed reflectivity-rainfall relationship approach, such as the Marshall-Palmer relationship, for an entire year and different seasons, can be problematic in cases where the relationship varies spatially and temporally throughout a region. From this perspective, this study explores the use of long-term radar reflectivity for South Korea to obtain a nationwide calibrated Z-R relationship and the associated uncertainties within a Bayesian inference framework. A calibrated spatially structured pattern in the parameters exists, particularly for the wet season and parameter for the dry season. A pronounced region of high values during the wet and dry seasons may be partially associated with storm movements in that season. Overall, the radar rainfall fields based on the proposed modeling procedure are similar to the observed rainfall fields. In contrast, the radar rainfall fields obtained from the existing Marshall-Palmer relationship show a systematic underestimation. In the event of high impact weather, it is expected that the value of national radar resources can be improved by establishing an active watershed-level hydrological analysis system.

A Study on the Quality Control Plan for Waterproof Construction in Apartment Houses (공동주택 방수공사 품질관리 방안 마련에 관한 연구)

  • Kim, Kwang-Ki;Kim, Byoungil
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.109-120
    • /
    • 2024
  • For successful waterproofing construction, it is very important to secure construction quality as well as material performance of waterproofing materials used in construction. Due to the long-term cost reduction policy following the economic downturn in the construction market, most construction companies are using general low-priced waterproof materials rather than high-quality waterproof materials without clear quality control standards. Without clear education on construction, construction is being carried out with meaning only on construction activities. In addition, the waterproofing method applied in combination is a situation where water leakage occurs due to waterproofing failure due to insufficient construction quality because the construction method is complicated. Therefore, it is necessary to review the quality control measures(design, materials, construction) for successful waterproofing work and improve problems that are derived so that stable waterproofing work can be done. In order to expect the leakage prevention effect of a building, first, it is required to select appropriate materials for each part of the building and environment in the design stage, and the selected materials must satisfy all items of the Korean Industrial Standard(KS). Second, to secure the quality of waterproofing construction, sincere construction by workers is required. In this paper, we tried to describe "review of waterproof design", "constructor education", "site inspection", and "criticism(correction/supplementation)" as quality control measures after material selection.

The Efficacy and Effect of Reverse Geometry Contact Lens on Cornea (역기하학 렌즈의 유효성과 각막에 미치는영향)

  • Kim, Kwang-Bae;Kim, Young-Hoon;Bark, Sang-Bai;Sun, Kyung-Ho;Jeong, Youn-Hong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2007
  • Object of this research is to estimate the effect of myopia correction and safety on reverse geometry contact lens fitting in school children. This research include 53(106eyes) schoolchildren among 7 to 18 years who has low to moderate myopia(-1.00D~-5.00D) and prescribed reverse geometry contact lens for purpose on orthokeratology between January to July 2004 and had 3months full follow up examination. They were tested for slit lamp examinations, BUT(Break up time), direct ophthalmoscopy, retinoscopy, uncorrected visual acuity, best corrected visual acuity, autorefraction, autokeratometry and corneal topography in each examination(1day, 1week, 2weeks, 1, 2, and 3months) of before-and-after lens wearing to find out the effect of myopic correction and side effect. The results came out as follow. The average of uncorrected visual acuity was $0.0938{\pm}0.378$ before lens wear and $0.3136{\pm}0.283$ after 1day lens wear, and there was fast improvement after 1week($0.7925{\pm}0.301$) and little improvement after 2weeks period but still they shows better uncorrected visual acuity(p<0.01). The result of this study, the reverse geometry lens is very useful to correct refractive error and control the progression of myopia temporally among low to moderate myopic patient. The side effects were relatively rare but further study should be necessary with long term lens wear effect on eye health. For the lens prescription, the clinical fitting process had higher rate of success with consideration of eccentricity and corneal topography.

  • PDF

Estimation of TROPOMI-derived Ground-level SO2 Concentrations Using Machine Learning Over East Asia (기계학습을 활용한 동아시아 지역의 TROPOMI 기반 SO2 지상농도 추정)

  • Choi, Hyunyoung;Kang, Yoojin;Im, Jungho
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.275-290
    • /
    • 2021
  • Sulfur dioxide (SO2) in the atmosphere is mainly generated from anthropogenic emission sources. It forms ultra-fine particulate matter through chemical reaction and has harmful effect on both the environment and human health. In particular, ground-level SO2 concentrations are closely related to human activities. Satellite observations such as TROPOMI (TROPOspheric Monitoring Instrument)-derived column density data can provide spatially continuous monitoring of ground-level SO2 concentrations. This study aims to propose a 2-step residual corrected model to estimate ground-level SO2 concentrations through the synergistic use of satellite data and numerical model output. Random forest machine learning was adopted in the 2-step residual corrected model. The proposed model was evaluated through three cross-validations (i.e., random, spatial and temporal). The results showed that the model produced slopes of 1.14-1.25, R values of 0.55-0.65, and relative root-mean-square-error of 58-63%, which were improved by 10% for slopes and 3% for R and rRMSE when compared to the model without residual correction. The model performance by country was slightly reduced in Japan, often resulting in overestimation, where the sample size was small, and the concentration level was relatively low. The spatial and temporal distributions of SO2 produced by the model agreed with those of the in-situ measurements, especially over Yangtze River Delta in China and Seoul Metropolitan Area in South Korea, which are highly dependent on the characteristics of anthropogenic emission sources. The model proposed in this study can be used for long-term monitoring of ground-level SO2 concentrations on both the spatial and temporal domains.

Evaluating the Predictability of Heat and Cold Damages of Soybean in South Korea using PNU CGCM -WRF Chain (PNU CGCM-WRF Chain을 이용한 우리나라 콩의 고온해 및 저온해에 대한 예측성 검증)

  • Myeong-Ju, Choi;Joong-Bae, Ahn;Young-Hyun, Kim;Min-Kyung, Jung;Kyo-Moon, Shim;Jina, Hur;Sera, Jo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.4
    • /
    • pp.218-233
    • /
    • 2022
  • The long-term (1986~2020) predictability of the number of days of heat and cold damages for each growth stage of soybean is evaluated using the daily maximum and minimum temperature (Tmax and Tmin) data produced by Pusan National University Coupled General Circulation Model (PNU CGCM)-Weather Research and Forecasting (WRF). The Predictability evaluation methods for the number of days of damages are Normalized Standard Deviations (NSD), Root Mean Square Error (RMSE), Hit Rate (HR), and Heidke Skill Score (HSS). First, we verified the simulation performance of the Tmax and Tmin, which are the variables that define the heat and cold damages of soybean. As a result, although there are some differences depending on the month starting with initial conditions from January (01RUN) to May (05RUN), the result after a systematic bias correction by the Variance Scaling method is similar to the observation compared to the bias-uncorrected one. The simulation performance for correction Tmax and Tmin from March to October is overall high in the results (ENS) averaged by applying the Simple Composite Method (SCM) from 01RUN to 05RUN. In addition, the model well simulates the regional patterns and characteristics of the number of days of heat and cold damages by according to the growth stages of soybean, compared with observations. In ENS, HR and HSS for heat damage (cold damage) of soybean have ranged from 0.45~0.75, 0.02~0.10 (0.49~0.76, -0.04~0.11) during each growth stage. In conclusion, 01RUN~05RUN and ENS of PNU CGCM-WRF Chain have the reasonable performance to predict heat and cold damages for each growth stage of soybean in South Korea.

Coronary Fistulas -20 years experience - (관상동맥루)

  • Lee Jeong Ryul;Jung Yo Chun;Choi Chang Hyu;Kim Woong Han;Kim Yong Jin;Bae Eun Jung;Noh Chung Il
    • Journal of Chest Surgery
    • /
    • v.38 no.9 s.254
    • /
    • pp.609-615
    • /
    • 2005
  • Background: Some controversy still exists concerning the operative indications of coronary fistulas. Nevertheless, a short-term and long-term outcomes are excellent with surgical interventions. In this study, we assessed our surgical results on this disease entity during the last 20 years. Anatomic diversity was described as well. Material and Method: From April 1986 to March 2005, 20 patients with coronary fistulas underwent surgical correction in Seoul National University Children's Hospital. Their medical records were reviewed retrospectively. Result: Twelve patients ($60\%$) were asymptomatic prior to surgery. All had electrocardiogram and echocardiogram and all but 3 had coro-nary angiogram preoperatively. Anatomically, none of them had two or more coronary fistulas. The sites of origin were left coronary system in 11 patients and right in 9. The draining sites were right ventricle in 11, right atrium in 3, left ventricle in 3, main pulmonary artery in 2, and superior vena cavae in 1. All of the involved, the coro-nary arteries were dilated or aneurismal. In 1 case, there was atherosclerotic change but no ischemic evidence in preoperative electrocardiogram. Operative techniques included external obliteration (13), internal obliteration (5), and both (2). External obliteration was done by ligation of the fistulous tract only in T patients, by fstula ligation plus plication in 3 and by plication or patch closure via fistulotomy in 3. There was no operative mortality. All of postoperative morbidities including transient sinus arrhythmia (2), complete atrioventricular block (1), decreased left ventricular function (2), ventricular tachycardia (1), pericarditis (1), and seizure (1) improved on discharge. The mean follow-up was 55.1$\pm$50.2 months (4.0 months${\~}$18.0 years) and there were no recurrences of fistula. There was 1 second operation for aortic root aneurysm, which developed after external patch closure of right coronary fistula. Conclusion: We demonstrated here that coronary fistulas can be cured with excellent clinical outcome and low operative risk under precise diagnosis. Understanding the anatomic diversity will help to construct surgical plans.