• 제목/요약/키워드: Long wave radiation

검색결과 97건 처리시간 0.025초

태양복사모델(SOLWEIG)의 복사플럭스 자료를 활용한 노면온도 예측: 서울시 내부순환로 대상 (Predicting Road Surface Temperature using Solar Radiation Data from SOLWEIG(SOlar and LongWave Environmental Irradiance Geometry-model): Focused on Naebu Expressway in Seoul)

  • 안숙희;권혁기;양호진;이근희;이채연
    • 한국지리정보학회지
    • /
    • 제23권4호
    • /
    • pp.156-172
    • /
    • 2020
  • 본 연구는 대상도로인 내부순환로에 대해 태양복사모델(SOlar and LongWave Environmental Irradiance Geometry-model, SOLWEIG)을 통해 산출한 도로의 그림자 패턴을 사용하여 항상 그늘이 지는 음영지역을 살펴보고, 열수지법을 기반으로 한 노면온도예측모델(road surface temperature prediction model, 이하 RSTPM)과 SOLWEIG 모델을 연계하여 고해상도의 태양복사정보를 활용한 도로의 노면온도를 예측하고자 하였다. 우선, 그림자 패턴 및 복사플럭스 산출의 정확도를 높이기 위하여 안개, 구름, 강수 등의 영향을 최소화할 수 있는 사례일을 선정하여, 고도 및 지형의 효과에 따른 그림자의 영향을 살펴보았다. 그 결과, 터널 입출구와 고도가 높은 지역에서 그림자 영역이 오래 지속되었고, 그림자의 영향을 많이 받는 구간의 복사량 감소가 뚜렷하게 나타났다. 이는 노면온도 예측결과에 반영되어 지형적으로 개방된 지점에서는 노면온도가 높게 예측되고, 고도가 높은 지점들은 그렇지 않은 지점에 비해 상대적으로 낮게 예측되었다. 본 연구의 결과는 겨울철 기상상황에 따른 도로 결빙구간을 예측하여 도로 관리자 및 운전자의 의사결정 자료로서의 활용이 기대된다.

고무 접합이 후방복사된 리키 램파 프로파일에 미치는 영향 (Effects of Rubber Loading on the Ultrasonic Backward Radiation Profile of Leaky Lamb Wave)

  • 송성진;권성덕;정민호;김영환
    • 비파괴검사학회지
    • /
    • 제22권5호
    • /
    • pp.508-515
    • /
    • 2002
  • 다층재료의 접합특성 평가는 오랫동안 많은 논의가 있어 왔는데, 본 연구에서는 후방복사 초음파 기술을 사용하여 여러 충이 있는 재료의 특성을 평가하기 위한 자동화된 시스템을 개발하고 스틸 판재와 고무가 접합된 스틸 판재의 후방복사 프로파일을 획득하였다. 후방복사의 rf 파형과 주파수 스펙트럼은 리키 램파 모드들의 특성을 나타내고 있다. 집합된 고무 두께의 증가에 따라 입사각이 $13.4^{\circ}$일 때의 후방복사 진폭이 지수적으로 감소함을 보이며 부분적으로 고무가 접합된 시편에서 선택되어진 입사각으로 입사위치를 바꾸어가며 스캐닝한 결과 정확하게 고무가 접합되어 있지 않은 지역을 결정할 수 있었다. 리키 램파에 의한 후방복사는 판재의 물성은 물론이고 다층 재료의 접합특성 평가에 활용할 수 있다.

인듐안티모나이드(InSb) 소자를 이용한 적외선 방사온도 계측시스템의 개발연구 (Development of Radiation Thermometer using InSb Photo-detector)

  • 황병옥;이원식;장경영
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.46-52
    • /
    • 1995
  • This paper proposes methodologies for the development of radiation thermometer using InSb photo-detector of which spectral sensitivity is excellent over the wave length range of 2 .mu. m .approx. 5 .mu. m. The proposed radiation thermometer has broad measurement range from normal to high, up to more than 1000 .deg. C, with high accuracy, and can measure temperature on the material surface or heat emission noncontactely with high speed. Optical system was consisted of two convex lens with foruslength of 15.2mm for infrared lay focusing, Ge filter to cut the short wave length components and sapphire filter to cut the long wave length components. The cold shielded was installed in the whole surface of the light-absorbing element to remove the error- mometer, calibration using black body furnace which has temperature range of 90 .deg. C .approx. 1100 .deg. C was carried out, and temperature calaibration curve was obtained by exponential function curvefitting. The result shows maximum error less than 0.24%(640K .+-. 1.6K) over the measurement range of 90 .deg. C .approx. 700 .deg. C, and from this result the usefulness of the developed thermometer has been confirmed.

  • PDF

국내 주요도시의 표준기상자료를 이용한 시간당 표면온도 산출 및 분석 (Analysis and Calculation of Hourly Surface Temperature Based on Typical Meterorological Data for Major Cities in Korea)

  • 이관호;조현철
    • 한국태양에너지학회 논문집
    • /
    • 제32권3호
    • /
    • pp.123-128
    • /
    • 2012
  • Computer simulation of buildings and solar energy systems is being used increasingly in energy assessments and design. The purpose of our work is to predict the surface temperature on inclined surfaces based on ISO-TRY typical weather data. To reach this goal, three studies were performed. They consisted of quantifying the accuracy of various well-known three models. The first type of models calculated diffuse horizontal irradiations from global ones and the second type models computed global irradiations on inclined planes from diffuse and global components on a horizontal surface. The third type of model calculated long-wave radiation and surface temperature from ISO-TRY typical weather data. The proposed model can provide an alternative to building designers in estimating the surface temperature and solar irradiation on inclined surfaces where only the typical meteorological data are available.

조경용 투수성 블록포장의 열특성 (Thermal Characteristics of Permeable Block Pavements for Landscape Construction)

  • 한승호;류남형;윤용한;김원태;강진형
    • 한국환경과학회지
    • /
    • 제17권5호
    • /
    • pp.573-580
    • /
    • 2008
  • This study aims to measure and to analyze the characteristics of thermal environment of the various permeable pavement materials such as a break stone pavement (Green block cubic), soil protection pavement (Soil tector), soil cement pavement and ceramic brick pavement under the summer outdoor environment. The thermal environment characteristics measured in the study includes the changes of surface temperature during the day, and long and short wave radiation of each pavement surface. The experimental condition is based on the data on the hottest temperature (August 9, 2006, $37.1^{\circ}C$) of the year. The albedo was the highest on the break stone pavement(0.8) from 12:00 to 14:00. The albedo of the ceramic brick pavement, a soil tector pavement and soil cement pavement were 0.35, 0.29 and 0.27 from 12:00 to 14:00, respectively. The peak surface temperature and long wave radiation was the highest on the soil protection pavements($56.6^{\circ}C$/627 W/$m^2$). The peak surface temperatures and long wave radiation on the ceramic brick pavement, a stone brick pavement and soil cement pavement were $51.7^{\circ}C$/627 W/$m^2$, $48.8^{\circ}C$/607 W/$m^2$ and $45.9^{\circ}C$/582 W/$m^2$, respectively. The heat environment was better on the break stone pavement than on the other pavements. This is mainly due to the high albedo of the break stone pavement(0.8) while the albedo value of a ceramic brick pavement, a soil tactor pavement and soil cement pavement were 0.35. 0.29 and 0.27. Large heat capacity($2,629kJ/m^3{\cdot}K$) of the stone brick pavements also contributes to this difference. The heat environment was better on the soil cement pavement than the soil tector pavement. This is mainly due to the evaporation of the soil cement pavement while the active evaporation of the soil tactor pavement was not continued after two days from the rainfall event. To improve the thermal environments in the urban area, it is recommended to raise the albedo of the pavements by brightening the surface color of the pavement materials. Further studies on the pavement materials and the construction methods which can enhance the continuous evapotranspiration from the pavements surface are needed.

하절기 도시 유형별 기상요소 비교 -대구광역시와 인근 4개 지역을 중심으로- (Comparison of Meteorological Elements by Type of City during Summer Season - Focus on the Daegu Metropolitan City and the Surrounding Four Regions -)

  • 최동호;이부용;정형세
    • 한국태양에너지학회 논문집
    • /
    • 제34권6호
    • /
    • pp.111-122
    • /
    • 2014
  • The purpose of this study is to understand relation of meteorological elements of air temperature, relative humidity and vapor pressure of four cities with Daegu. The followings are main results from this study. 1) There is very high correlation of meteorological elements according to distance between city and city. 2) In case of seaside town at Pohang, there were little changes than other cities for temperature, humidity and vapor pressure. 3) It was analysed stable and similar diurnal variation in water vapor pressure than air temperature and relative humidity at all observation site.

하절기 복사환경 관측을 통한 수목과 일사차폐 막 구조물의 자연냉각효과 (Analysis of Passive Cooling Effect of Membrane Shading Structure and the Tree by Field Observations in the Summer)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.137-146
    • /
    • 2007
  • This study is about the passive cooling effects of three outdoor solar shading facilities as trees, pergola with wistaria vine and membrane shading structure, which are expected to provide cool spots in the summer. Field observations of measuring thermal environment of selected facilities is executed. Thermal environment measuring was categorized as short wave radiation, long wave radiation, net radiation, globe temperature, surface temperature measured by infrared camera. Heat transfer mechanism is analyzed with overall data from field measurement. Results from this study are as below; 1) Radiation balance measured on shaded surface under membrane shading structure was 17%($86W/m^2$) of the unshaded surface radiation balance($511W/m^2$). 2) Surface temperature comparison between vegetation and membrane of the shading structure is performed at 3 o'clock in the afternoon. Surface temperature of vegetation was same as air temperature and that of membrane was $5^{\circ}C$ higher than air temperature. Vegetation transpiration is considered as the causing factor which make those differences. 3) Results from this study could be used as fundamental data for reducing heat island phenomena and continuos research on this subject would be needed.

음향방사력을 이용한 효모세포의 크기별 분리 (Size-based Separation of Yeast Cell by Surface Acoustic Wave-induced Acoustic Radiation Force)

  • 라이한 하디 줄리오;무함마드 소반 칸;무스타크 알리;굴람 데스트기르;박진수
    • 한국가시화정보학회지
    • /
    • 제21권3호
    • /
    • pp.93-100
    • /
    • 2023
  • The yeast Saccharomyces cerevisiae (S. cerevisiae) is considered an ideal eukaryotic model and has long been recognized for its pivotal role in numerous industrial production processes. Depending on the cell cycle phases, microenvironment, and species, S. cerevisiae varies in shape and has different sizes of each shape such as singlets, doublets, and clusters. Obtaining high-purity populations of uniformly shaped S. cerevisiae cells is crucial in fundamental biological research and industrial operations. In this study, we propose an acoustofluidic method for separating S. cerevisiae cells based on their size using surface acoustic wave (SAW)-induced acoustic radiation force (ARF). The SAW-induced ARF increased with cell diameter, which enabled a successful size-based separation of S. cerevisiae cells using an acoustofluidics device. We anticipate that the proposed acoustofluidics approach for yeast cell separation will provide new opportunities in industrial applications.

벼 기계이앙용 상자묘 생육에 미치는 세라믹 분말의 효과 (Effect of Ceramics on Growth of Rice Seedlings for Machine Transplanting)

  • 이철원;한충수;손석용
    • 한국작물학회지
    • /
    • 제42권2호
    • /
    • pp.141-145
    • /
    • 1997
  • 원적외선 복사 물질인 세라믹 분말을 벼 기계이앙상토에 혼합하였을 때 벼 유묘의 생장에 미치는 효과를 분석하고, 세라믹 분말의 적정혼합비를 구명하기 위하여 실험을 실시하였다. 공시 품종은 화성벼로 하였고, 세라믹 분말은 $Al_2$O$_3$계를 사용하였다. 시험한 결과를 요약하면 다음과 같다. 1. 시험에 사용한 세라믹 분말의 복사파장 범위는 6~11$mu extrm{m}$이었다. 2. 세라믹 분말의 혼합처리는 무처리에 비하여 초장이 뚜렷하게 증가하였다. 3. 세라믹 분말의 혼합처리는 모의 건물중을 증가시키는 것으로 나타났다. 4. 벼 유묘의 초장을 증가시키는 세라믹 분말의 추정 적정혼합비는 9.6%(240g)인 것으로 나타났다.

  • PDF

하절기 복사환경 관측을 통한 석재, 목재, 알루미늄 바닥재의 열특성 평가 (A Study of the Thermal Characteristics of Flooring Materials, Wood, Rock, Aluminum through Observation of its Radiant Environment in the Summer)

  • 최동호;이부용
    • 한국태양에너지학회 논문집
    • /
    • 제28권3호
    • /
    • pp.35-44
    • /
    • 2008
  • In this study, the experiment of the measuring of four different types of flooring materials' thermal characteristics was conducted and examined during the summer. The experimental materials were arranged on the existing slab of the roof, and then its thermal characteristics were examined from the point of view of thermal radiation analysis. The aim of this study is ultimately to draw the fundamental data for improvements in a building's thermal function and reduce the urban heat island phenomena through optimizing the thermal characteristics of the surface covering materials of a building. The results from this study are as follows; 1) Each experimental material's albedo was calculated as 0.83 on the aluminum panel, 0.40 on the rock block, 0.37 on the wood deck and 0.21 on the concrete. It shows that the concrete material, which has the lowest short wave reflective rate, absorbed the most radiation energy and the aluminium panel has absorbed the lowest radiation energy. 2) From the each experimental object's value of the long wave radiation, the concrete material measured the highest, at $628W/m^2$, and the aluminium panel measured the lowest at $412W/m^2$. Therefore, it verifies that the experimental objects' own radiation rate determines the amount of the long wave radiation. 3) The degree of energy absorbency of a building's surface covering materials is greatly influenced by its own albedo and radiation rate, Therefore, it needs to be considered for the improvements in a building's thermal function and reducing the urban heat island phenomena. 4) According to the evaluation result of the each experimental object's overall heat transmission screening function on the roof of a building, the wooden deck is proven to be an excellent material for excluding the outside temperature differences effectively with its characteristic of low heat capacity and conduction. Also its surface temperature on the roof slab and the temperature difference during the day were both measured at low.