• Title/Summary/Keyword: Long cable

Search Result 497, Processing Time 0.025 seconds

Development of the Practical Garment Apparatus to Measure Vital Sign of ECG for U-Health Care (ECG 생체신호 측정을 위한 실용적 U-헬스케어 의복개발)

  • Park, Hye-Jun;Hong, Kyung-Hi;Kim, Seung-Hwan;Shin, Seung-Shul
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.31 no.2 s.161
    • /
    • pp.292-299
    • /
    • 2007
  • Development of portable device measuring the vital sign continuously with no limit of time and space is absolutely prerequisite for the U-health care that grafts the ubiquitous concept into medical system. Accordingly, it requires to develop a garment style apparatus for measuring vital-sign that is easy to wear on for a long time period. This study suggests a method to improve the insulation of electric cable and the skin adhesion of electrode by integrating the electric conductive material to garment, in order to develop a garment apparatus for measuring ECG for U-health care. Results of the research are as follows; In order to provide the adjacent conductive yarns with insulation, braid with narrow woven end was interlaced using polyester yarn. As a result, the direct contact between electric conductive yarns was restrained, which would be interposed into pin-tuck structured cable. Washable silicone gel applied around the electrode made of electric conductive fabric improved the adhesion, which prevents electrodes from dropping off from the skin surface during body movement. ECG signals on the human subject were tested using the garment apparatus developed by the above method. And the result was that the clear QRS wave formation in the typical form of ECG could be measured in both conditions of still and moving state as well. The result of this study is expected to contribute for the production of U-health care related medical apparatus by accelerating the practical uses of the garment measuring vital sign at a reasonable price.

Measurement and Proposed Design Specification of Temperature Distribution in the Concrete Pylon (콘크리트 주탑의 온도분포 계측 및 설계규정 제안)

  • Hwang, Eui-Seung;Shim, Jae-Soo;Kim, Do-Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • This paper deals with monitoring and analysis of temperature measurement data in concrete pylon of long span cable bridges. During the construction of Geoga Bridge in Busan-Geoje Fixed Link Project, temperature sensors were installed in several sections of hollow box type concrete pylon and temperatures along the depth of the four sides of the section have been recorded along with ambient temperature. Effects of temperature distribution on the pylon are analysed using actual measured data and results are compared with the design guideline. It was found that the temperature load model for concrete girder can be applied to box type concrete pylon. Structural analysis of the pylon due to variation of temperature distribution during the construction is performed using 3D modelling and FE program and the maximum displacements of east-west and north-south side were calculated as 0.056m and 0.121m, respectively.

Implementation of Power Line MODEM for TDC Pulse Detection of SEPA

  • Yang, Hyun-Suk;Lee, Byung-Yong;Kim, Yoon-Sik;Seo, Dong-Hoan;Kim, Sung-Hwan;Kwon, Yeong-Gwal;Lee, Sung-Geun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.3
    • /
    • pp.430-436
    • /
    • 2008
  • Recently, there are many cases to use a ship's engine performance analyzer(SEPA) to measure pressure in cylinder and top dead center(TDC) of piston of engine, and analyze its performance such as fuel injection time and horsepower as well as wear of piston ring. But, SEPA needs TDC pulses($T(1){\sim}T(n)$) generated when pistons of engine are located to the TDC position ($TDC(1){\sim}TDC(n)$), these pulses are gathered from sensors connected to gear wheel of the propeller shaft in the remote distance from the measurement point. Therefore, operators need a long wire cable(WRC) to TDC detecting sensor to get these pulses, but this method is a very uncomfortable and expensive in case of installation, and it might decrease user's purchase desire. In this paper, we design and fabricate a small and inexpensive MODEM cable(M0C) so that it may be available to transmit TDC pulse generated from sensor in propeller shaft through existing power line. We also verify the facts that this MOC can be applied to SEPA and the effectiveness of the system through the experiments.

Optimum topology design of geometrically nonlinear suspended domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Structural Engineering and Mechanics
    • /
    • v.56 no.4
    • /
    • pp.667-694
    • /
    • 2015
  • The suspended dome system is a new structural form that has become popular in the construction of long-span roof structures. Suspended dome is a kind of new pre-stressed space grid structure that has complex mechanical characteristics. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The length of the strut, the cable initial strain, the cross-sectional area of the cables and the cross-sectional size of steel elements are adopted as design variables and the minimum volume of each dome is taken as the objective function. The topology optimization on lamella dome is performed by considering the type of the joint connections to determine the optimum number of rings, the optimum number of joints in each ring, the optimum height of crown and tubular sections of these domes. A simple procedure is provided to determine the configuration of the dome. This procedure includes calculating the joint coordinates and steel elements and cables constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). This paper explores the efficiency of lamella dome with pin-joint and rigid-joint connections and compares them to investigate the performance of these domes under wind (according to the ASCE 7-05), dead and snow loading conditions. Then, a suspended dome with pin-joint single-layer reticulated shell and a suspended dome with rigid-joint single-layer reticulated shell are discussed. Optimization is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for suspended domes.

Experimental Investigation of Large-Span Girder with Under-Tension System (언더텐션 시스템이 적용된 축소 실험체의 구조적 성능에 대한 연구)

  • Kim, Young-Min;Park, Dae-Ha;Lee, Ki-Hak;Lee, Jae-Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.4
    • /
    • pp.345-354
    • /
    • 2010
  • This paper presents an experimental investigation of the structural performance of a large-span girder bridge with an under-tension system. Typical long-span structures with beam and girder members have greater structural member depths and sizes to carry the moment and deflection. An under-tension system can be an effective structural system, as it allows the cables to resist some portions of the vertical loadings and deflections. To evaluate the serviceability and ultimate strength of the under-tension system, two $10m{\times}2.4m$ experimental under-tension systems were built and tested. One was developed with an H-beam section, and the other was made with a PF500 section that had the advantages of fast construction and lower construction cost. In the test, the maximum deflections at the mid-point of both beams were effectively reduced using under-tension systems. Also, the increased tension forces in the cable reduced the deflections. The PF500 members, which had a new shape and were developed using the module systems, performed better than the typical H-beam sections in terms of the deflections and ultimate strength.

Legacy System-Based Software Product Line Engineering: A Case Study on Cable Set-Top Box Software (기존 시스템 기반의 소프트웨어 제품라인 공학기법: 케이블 셋톱박스 소프트웨어 사례)

  • Choi, Hyun-Sik;Lee, Hye-Sun;Cho, Yoon-Ho;Kang, Kyo-Chul
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.7
    • /
    • pp.539-547
    • /
    • 2009
  • Software product line (SPL) engineering is an emerging paradigm for successful software reuse and has been adopted for various industrial and consumer products to improve their productivity and quality. However, most SPL methods require high initial costs and long development time, which makes many companies hesitate to adopt the SPL paradigm. In this paper we introduce a method to construct an SPL by extracting core assets from legacy components based on the feature model, which requires less initial time and effort. We also present a case study on cable set-top box software to illustrate the applicability of this method, and lessons learned that will provide guidelines for many companies to adopt the SPL paradigm.

Joint distribution of wind speed and direction in the context of field measurement

  • Wang, Hao;Tao, Tianyou;Wu, Teng;Mao, Jianxiao;Li, Aiqun
    • Wind and Structures
    • /
    • v.20 no.5
    • /
    • pp.701-718
    • /
    • 2015
  • The joint distribution of wind speed and wind direction at a bridge site is vital to the estimation of the basic wind speed, and hence to the wind-induced vibration analysis of long-span bridges. Instead of the conventional way relying on the weather stations, this study proposed an alternate approach to obtain the original records of wind speed and the corresponding directions based on field measurement supported by the Structural Health Monitoring System (SHMS). Specifically, SHMS of Sutong Cable-stayed Bridge (SCB) is utilized to study the basic wind speed with directional information. Four anemometers are installed in the SHMS of SCB: upstream and downstream of the main deck center, top of the north and south tower respectively. Using the recorded wind data from SHMS, the joint distribution of wind speed and direction is investigated based on statistical methods, and then the basic wind speeds in 10-year and 100-year recurrence intervals at these four key positions are calculated. Analytical results verify the reliability of the recorded wind data from SHMS, and indicate that the joint probability model for the extreme wind speed at SCB site fits well with the Weibull model. It is shown that the calculated basic wind speed is reduced by considering the influence of wind direction. Compared to the design basic wind speed in the Specification of China, basic wind speed considering the influence of direction or not is much smaller, indicating a high safety coefficient in the design of SCB. The results obtained in this study can provide not only references for further wind-resistance research of SCB, but also improve the understanding of the safety coefficient for wind-resistance design of other engineering structures in the similar area.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.3
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Design of wireless sensor network and its application for structural health monitoring of cable-stayed bridge

  • Lin, H.R.;Chen, C.S.;Chen, P.Y.;Tsai, F.J.;Huang, J.D.;Li, J.F.;Lin, C.T.;Wu, W.J.
    • Smart Structures and Systems
    • /
    • v.6 no.8
    • /
    • pp.939-951
    • /
    • 2010
  • A low-cost wireless sensor network (WSN) solution with highly expandable super and simple nodes was developed. The super node was designed as a sensing unit as well as a receiving terminal with low energy consumption. The simple node was designed to serve as a cheaper alternative for large-scale deployment. A 12-bit ADC inputs and DAC outputs were reserved for sensor boards to ease the sensing integration. Vibration and thermal field tests of the Chi-Lu Bridge were conducted to evaluate the WSN's performance. Integral acceleration, temperature and tilt sensing modules were constructed to simplify the task of long-term environmental monitoring on this bridge, while a star topology was used to avoid collisions and reduce power consumption. We showed that, given sufficient power and additional power amplifier, the WSN can successfully be active for more than 7 days and satisfy the half bridge 120-meter transmission requirement. The time and frequency responses of cables shocked by external force and temperature variations around cables in one day were recorded and analyzed. Finally, guidelines on power characterization of the WSN platform and selection of acceleration sensors for structural health monitoring applications were given.

Analysis on the Effect of LCR Filter to Mitigate Transient Overvoltage on the High Voltage Induction Motor Fed by Multi Level Inverter (멀티레벨 인버터 구동 고압유도전동기에시 발생하는 과도과전압 저감을 위한 LCR필터의 효과분석)

  • Kim, Jae-Chul;Kwon, Young-Mok
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.3
    • /
    • pp.45-52
    • /
    • 2006
  • In this paper, we analyze on the effect of LCR filter to mitigate transient overvoltage on the high voltage induction motor fed by H-bridge cascaded 7-level inverter. The switching surge voltage that it was occurred in inverter appears transient overvoltage at the motor input terminal. the transient overvoltage becomes the major cause to occur the insulation failure by serious voltage stress in the stator winding of high voltage induction motor. The effect of transient overvoltage appears more serious in high voltage induction motor than low voltage induction motor. We selected LCR filter for reduction of the transient overvoltage. Consequently, we demonstrated that the LCR filter connected to the invertor output terminals greatly reduces the transient voltage stress and ringing. The results of simulation show the suppression of transient overvoltage at the motor end of a long cable. using EMTP