• Title/Summary/Keyword: Long cable

Search Result 498, Processing Time 0.023 seconds

Reliability Test Recommendations of Transmission Level HTS Power Cable (송전급 초전도케이블 신뢰성평가를 위한 시험방법)

  • Park, J.;Yang, B.;Kang, J.;Cho, J.;Lee, S.;Shim, K.;Kim, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.29-33
    • /
    • 2010
  • For last 10 years, there are big progress and many efforts in the development of HTS power equipments by some country including South Korea. Especially HTS cable system is the strongest candidate among them from the viewpoint of applying to real grid, because of the feature of it, compact and large capacity. In South Korea, transmission level 154kV, the world top voltage class, HTS cable system was installed and has been tested in KEPCO Gochang Underground Cable Test Field since the early of 2010 in order to meet test requirements made by KEPCO, the only grid company in South Korea. The type test of it will be completed by October 2010 and subsequently long-term load cycle test will be performed during 6 months. Also in the near future, KEPCO has a plan to demonstrate transmission level HTS cable system in real grid, in order to meet practical requirements and confirm the feasibility of it. This paper says the test plan of transmission level 154kV HTS cable system and the way how to test it.

A new cable force identification method considering cable flexural rigidity

  • Wang, Long;Wu, Bo;Gao, Junyue;Shi, Kairong;Pan, Wenzhi;He, Zhuoyi;Ruan, Zhijian;Lin, Quanpan
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.227-235
    • /
    • 2018
  • Cables are the main load-bearing members of prestressed structure and other tensegrity structures. Based on the static equilibrium principle, a new cable force identification method considering cable flexural rigidity is proposed. Its computational formula is derived and the strategy to solve its implicit formula is introduced as well. In order to improve the reliability and practicality of this method, the influence of the cable flexural rigidity on cable force identification accuracy is also investigated. Through cable force identification experiments, the relationships among certain parameters including jacking force, jacking displacement, initial cable force, and sectional area (flexural rigidity) are studied. The results show that the cable force calculated by the proposed method considering flexural rigidity is in good agreement with the finite element results and experimental results. The proposed method with high computational accuracy and resolution efficiency can avoid the influences of the boundary condition and the length of the cable on calculation accuracy and is proven to be conveniently applied to cable force identification in practice.

Study on Disaster Prevention System for Long Span Bridge over the Sea (장대해상교량의 방재시스템 구축에 관한 연구)

  • Kong, Byung-Seung
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.3
    • /
    • pp.59-64
    • /
    • 2009
  • Bridge types such as the suspension bridges and the cable stayed bridges maintained by cables present the dangerous possibility of a ship running through the bottom of the bridge. Due to hangers and main cables in the upper structural system, the bridge is also susceptible to disasters. However, these cable bridges are usually used for long span bridges over the sea. This structure is relatively more exposed to disasters, such as wind, hail, and earthquake, than other structures. This structure also has the potential to cause car accidents on account of the poor visibility due to foggy conditions. If a fire breaks out because of a car accident due to wind, a car explosion will likely occur.

Evaluation of Applicability of Cable Force Monitoring System of Cable-stayed Bridge by Field Loading Test (재하시험을 통한 사장교의 케이블 장력 모니터링 시스템의 적용성 평가)

  • Kim, Jeong-Hoon;Song, Jae-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.1 s.53
    • /
    • pp.205-213
    • /
    • 2009
  • This study was planned to develop monitoring system of cable force to resolve cable force of cable-stayed bridge efficiently in a long-term plan. In the proposed monitoring system, firstly data are sampled from real-time acceleration record, secondly these sampled data are frequency analyzed by using the FFT(Fast Fourier Transform) algorism and lastly the analyzed results are averaged and generalized. For evaluating the applicability of this monitoring system, field loading test has performed in real cable-stayed bridge. In comparison with cable force by field manual calculation and cable force of monitoring system by semi-automatic calculation, the difference of calculated cable forces has within 1% error range and it is acceptable range. Additionally within negligible 5% error range of difference has occur between field manual calculation and monitoring system by automatic calculation. so monitoring system in this study has been verified to be reliable.

Active Control System for Mitigation of Cable Vibration in Cable-Stayed Bridges (사장교 케이블 진동저감을 위한 능동제어시스템)

  • Hwang, In-Ho;Jeong, Cheol-Oh;Lee, Jong-Han;Lee, Jong-Seh
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.557-563
    • /
    • 2007
  • Rain-wind induced cable vibration can cause serious problems in cable-stayed bridge. External dampers attached to the cables have become widely accepted as an effective means for stay-cable vibration suppression. For very long stay-cables, however, such damper systems are rendered ineffective, as the dampers need be attached near the end of cables for aesthetic reasons. A recent study by the authors proposed that a movable anchorage system is replaced direct fixed support of the cable with a support through a bearing and damper. This paper extends the previous work by adding active control system to mitigate the cable vibration. The response of a cable with the proposed active control system is obtained and then compared to those of the cable with and without an external passive damper. The results show that the active control system can provide superior protection than the passive control system for a cable vibration.

Ultimate behavior and ultimate load capacity of steel cable-stayed bridges

  • Choi, D.H.;Yoo, H.;Shin, J.I.;Park, S.I.;Nogami, K.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.4
    • /
    • pp.477-499
    • /
    • 2007
  • The main purpose of this paper is to investigate the ultimate behavior of steel cable-stayed bridges with design variables and compare the validity and applicability of computational methods for evaluating ultimate load capacity of cable-stayed bridges. The methods considered in this paper are elastic buckling analysis, inelastic buckling analysis and nonlinear elasto-plastic analysis. Elastic buckling analysis uses a numerical eigenvalue calculation without considering geometric nonlinearities of cable-stayed bridges and the inelastic material behavior of main components. Inelastic buckling analysis uses an iterative eigenvalue calculation to consider inelastic material behavior, but cannot consider geometric nonlinearities of cable-stayed bridges. The tangent modulus concept with the column strength curve prescribed in AASHTO LRFD is used to consider inelastic buckling behavior. Detailed procedures of inelastic buckling analysis are presented and corresponding computer codes were developed. In contrast, nonlinear elasto-plastic analysis uses an incremental-iterative method and can consider both geometric nonlinearities and inelastic material behavior of a cable-stayed bridge. Proprietary software ABAQUS are used and user-subroutines are newly written to update equivalent modulus of cables to consider geometric nonlinearity due to cable sags at each increment step. Ultimate load capacities with the three analyses are evaluated for numerical models of cable-stayed bridges that have center spans of 600 m, 900 m and 1200 m with different girder depths and live load cases. The results show that inelastic buckling analysis is an effective approximation method, as a simple and fast alternative, to obtain ultimate load capacity of long span cable-stayed bridges, whereas elastic buckling analysis greatly overestimates the overall stability of cable-stayed bridges.

Reliability-Based Managing Criteria for Cable Tension Force in Cable-stayed Bridges (신뢰성에 기초한 사장교 케이블 장력 관리기준치 설정)

  • Cho, Hyo-Nam;Kang, Kyung-Koo;Cha, Cheol-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.3
    • /
    • pp.129-138
    • /
    • 2005
  • This paper presents a methodology for the determination of optimal managing criteria for cable tension force in cable-stayed bridges using acceleration data acquired by monitoring system. There are many long span bridges installed with monitoring system in Korea. The monitoring systems are installed to diagnose abnormal behavior or damages in bridges and to warn these to bridge management agency. In cable-stayed bridges, the cable tension force could be an important indicator of abnormal behavior because of the geometric configuration of the cable-stayed bridge. If the management value of cable tension force is set too high or too low, then the monitoring system could not warn properly for the abnormal behavior of a bridge. Generally, the management value is set by empirical or engineering judgment, but in this paper, a new methodology for the determination of managing criteria for cable tension force is proposed based on the probability distribution model for tension force and reliability analysis. The proposed methodology is applied to a real concrete cable-stayed bridge in order to investigate its applicability.

Vibration Reduction Effects of Stay Cable Due to Friction Damper (마찰댐퍼에 의한 사장 케이블의 진동저감 효과)

  • Kim, Hyung Ku;Yhim, Sung Soon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.54-61
    • /
    • 2013
  • Stay cable has a strong axial rigidity due to large initial tension and, on the other hand, it has a weak laterally flexural rigidity. Wind loads or traffic loads cause the cables to vibrate significantly and affect the mechanical properties and the performance of cables of cable-stayed bridge (CSB). Therefore, the development of vibration reduction design is an urgent task to control the vibration vulnerable long-span bridges. As Friction damper (FD) shows to reduce the amplitude and duration time of vibration of cable of CSB from measured date in field test, friction damper can be considered that it is effective device significantly to reduce the amplitude and duration time in vibration of cable of CSB under traffic load, wind load and so on. Vibration characteristics of cable can change according to manufacturing method and type of established form. Nevertheless, analysis method in this study can present the design of friction damper for vibration reduction of cable of cable-stayed bridge from now on.

Evaluation of torsional response of a long-span suspension bridge under railway traffic and typhoons based on SHM data

  • Xia, Yun-Xia;Ni, Yi-Qing;Zhang, Chi
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.4
    • /
    • pp.371-392
    • /
    • 2014
  • Long-span cable-supported bridges are flexible structures vulnerable to unsymmetric loadings such as railway traffic and strong wind. The torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds may deform the railway track laid on the bridge deck and affect the running safety of trains and the comfort of passengers, and even lead the bridge to collapse. Therefore, it is eager to figure out the torsional dynamic response of long-span cable-supported bridges under running trains and/or strong winds. The Tsing Ma Bridge (TMB) in Hong Kong is a suspension bridge with a main span of 1,377 m, and is currently the world's longest suspension bridge carrying both road and rail traffic. Moreover, this bridge is located in one of the most active typhoon-prone regions in the world. A wind and structural health monitoring system (WASHMS) was installed on the TMB in 1997, and after 17 years of successful operation it is still working well as desired. Making use of one-year monitoring data acquired by the WASHMS, the torsional dynamic responses of the bridge deck under rail traffic and strong winds are analyzed. The monitoring results demonstrate that the differences of vertical displacement at the opposite edges and the corresponding rotations of the bridge deck are less than 60 mm and $0.1^{\circ}$ respectively under weak winds, and less than 300 mm and $0.6^{\circ}$ respectively under typhoons, implying that the torsional dynamic response of the bridge deck under rail traffic and wind loading is not significant due to the rational design.

A Research on the Classified Structural System in Long-Span Structures (대공간 구조형식 분류체계에 관한 연구)

  • Yang, Jae-Hyuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.3 s.5
    • /
    • pp.81-92
    • /
    • 2002
  • The objective of this paper is to help to make decision of the appropriate structural types in long span structured building due to range of span. For the intention, based on 7 forces of structural element, it is analized the relationships among 6 configurations of structural element(d/1), 25 structural types, 4 materials, and span-length known with 186 sample from 1850 to 1996. 1) bending forces: $club(1/100{\sim}1/10),\;plate(1/100{\sim}1/10),\;rahmen(steel,\;10{\sim}24m)\;simple\;beam(PC,\;10{\sim}35m)$ 2) shearing forces: $shell(1/100{\sim}1/1000)\;hyperbolic\;paraboloids(RC,25{\sim}97m)$ 3) shearing+bending forces: plate, folded $plate(RC21{\sim}59m)$ 4) compression axial forces: club, $arch(RC,\;32{\sim}65m)$ 5) compression+tension forces: shell, braced dome $shell(RC,\;40{\sim}201m),\;vault\;shell(RC,\;16{\sim}103m)$ 6) compression+tension axial forces: $rod(1/1000{\sim}1/100)$, cable(below 1/1000)+rod, coble+rod+membrane(below 1/1000), planar $truss(steel,\;31{\sim}134m),\;arch\;truss(31{\sim}135m),\;horizontal\;spaceframe(29{\sim}10\;8m),\;portal\;frame(39{\sim}55m),\;domical\;space\;truss(44{\sim}222m),\;framed\;\;membrane(45{\sim}110m),\;hybrid\;\;membrane\;(42{\sim}256m)$ 7) tension forces: cable, membrane, $suspension(60{\sim}150m),\;cable\;\;beam(40{\sim}130m),\;tensile\;membrane(42{\sim}136m),\;cable\;-slayed(25{\sim}90m),\;suspension\;membrane(24{\sim}97m),\;single\;layer\;pneumatic\;structure(45{\sim}231m),\;double\;layer\;pneumatic\;structures(30{\sim}44m)$

  • PDF