• Title/Summary/Keyword: Long Wave Radiation

Search Result 97, Processing Time 0.034 seconds

Dependence of Energetic Electron Precipitation on the Geomagnetic Index Kp and Electron Energy

  • Park, Mi-Young;Lee, Dae-Young;Shin, Dae-Kyu;Cho, Jung-Hee;Lee, Eun-Hee
    • Journal of Astronomy and Space Sciences
    • /
    • v.30 no.4
    • /
    • pp.247-253
    • /
    • 2013
  • It has long been known that the magnetospheric particles can precipitate into the atmosphere of the Earth. In this paper we examine such precipitation of energetic electrons using the data obtained from low-altitude polar orbiting satellite observations. We analyze the precipitating electron flux data for many periods selected from a total of 84 storm events identified for 2001-2012. The analysis includes the dependence of precipitation on the Kp index and the electron energy, for which we use three energies E1 > 30 keV, E2 > 100 keV, E3 > 300 keV. We find that the precipitation is best correlated with Kp after a time delay of < 3 hours. Most importantly, the correlation with Kp is notably tighter for lower energy than for higher energy in the sense that the lower energy precipitation flux increases more rapidly with Kp than does the higher energy precipitation flux. Based on this we suggest that the Kp index reflects excitation of a wave that is responsible for scattering of preferably lower energy electrons. The role of waves of other types should become increasingly important for higher energy, for which we suggest to rely on other indicators than Kp if one can identify such an indicator.

Multimodal Image Fusion with Human Pose for Illumination-Robust Detection of Human Abnormal Behaviors (조명을 위한 인간 자세와 다중 모드 이미지 융합 - 인간의 이상 행동에 대한 강력한 탐지)

  • Cuong H. Tran;Seong G. Kong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.637-640
    • /
    • 2023
  • This paper presents multimodal image fusion with human pose for detecting abnormal human behaviors in low illumination conditions. Detecting human behaviors in low illumination conditions is challenging due to its limited visibility of the objects of interest in the scene. Multimodal image fusion simultaneously combines visual information in the visible spectrum and thermal radiation information in the long-wave infrared spectrum. We propose an abnormal event detection scheme based on the multimodal fused image and the human poses using the keypoints to characterize the action of the human body. Our method assumes that human behaviors are well correlated to body keypoints such as shoulders, elbows, wrists, hips. In detail, we extracted the human keypoint coordinates from human targets in multimodal fused videos. The coordinate values are used as inputs to train a multilayer perceptron network to classify human behaviors as normal or abnormal. Our experiment demonstrates a significant result on multimodal imaging dataset. The proposed model can capture the complex distribution pattern for both normal and abnormal behaviors.

Comparing Physical and Thermal Environments Using UAV Imagery and ENVI-met (UAV 영상과 ENVI-met 활용 물리적 환경과 열적 환경 비교)

  • Seounghyeon KIM;Kyunghun PARK;Bonggeun SONG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.145-160
    • /
    • 2023
  • The purpose of this study was to compare and analyze diurnal thermal environments using Unmanned Aerial Vehicles(UAV)-derived physical parameters(NDVI, SVF) and ENVI-met modeling. The research findings revealed significant correlations, with a significance level of 1%, between UAV-derived NDVI, SVF, and thermal environment elements such as S↑, S↓, L↓, L↑, Land Surface Temperature(LST), and Tmrt. In particular, NDVI showed a strong negative correlation with S↑, reaching a minimum of -0.52** at 12:00, and exhibited a positive correlation of 0.53** or higher with L↓ at all times. A significant negative correlation of -0.61** with LST was observed at 13:00, suggesting the high relevance of NDVI to long-wavelength radiation. Regarding SVF, the results showed a strong relationship with long-wave radiative flux, depending on the SVF range. These research findings offer an integrated approach to evaluating thermal comfort and microclimates in urban areas. Furthermore, they can be applied to understand the impact of urban design and landscape characteristics on pedestrian thermal comfort.

Pergola's Shading Effects on the Thermal Comfort Index in the Summer Middays (여름철 낮 그늘시렁의 차양이 온열쾌적 지표에 미치는 영향)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.52-61
    • /
    • 2013
  • This study was conducted to investigate the effects of pergola's shading on the thermal comfort index in the summer. The 3 type of pergolas($4m{\times}4m{\times}h2.7m$) which were screened overhead(I)/overhead west(II)/overhead west north(III) plane with reed blind for summer shading and winter wind break, were constructed on the 4th floor rooftop. Thereafter the meteorological variables(air temperature, humidity, radiation, and wind speed) of pergola I, III and rooftop were measured from 14 to 16 August 2013(1st experiment), those of pergola I, II and rooftop were measured from 26 to 28 August 2013(2nd experiment). The effects of pergola's shading on the radiation environment and mean radiant temperature($T_{mrt}$), standard effective temperature($SET^*$) were as follows. The maximum 1 h mean values of differences ${\Delta}$ of the sums of shortwave radiant flux densities absorbed by the human body (${\Delta}K_{abs,max}$) between pergola I, III and nearby sunny rooftop were $-119W/m^2$, $-158W/m^2$, those between pergola I, II and rooftop were $-145W/m^2$, $-159W/m^2$. The maximum 1 h mean values of differences ${\Delta}$ of the sums of long wave radiant flux densities absorbed by the human body (${\Delta}L_{abs,max}$) between pergola I, III and nearby sunny rooftop, were $-15W/m^2$, $-17W/m^2$, those between pergola I, II and nearby rooftop, were $-8W/m^2$, $-7W/m^2$. The response of the direction dependent long wave radiant flux densities $L_1$ on the pergola's shading turned out to be distinctly weaker as compared to shortwave radiant flux densities $K_1$. The pergola's shading leads to a lowering of $T_{mrt}$ and $SET^*$. The peak values of $T_{mrt}$ absorbed by the human body were decreased $16^{\circ}C$ and $21.4^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $18.8^{\circ}C$ and $20.8^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The peak values of $SET^*$ absorbed by the human body were decreased $2.9^{\circ}C$ and $2.6^{\circ}C$ under pergola I and III as compared to that of nearby rooftop in the 1st experiment. Those were decreased $3.5^{\circ}C$ and $2.6^{\circ}C$ under pergola I and II as compared to that of nearby rooftop in the 2nd experiment. The relative $SET^*$ decrease in pergola II, III compared to nearby sunny rooftop $SET^*$ were lower than that in pergola I, revealing the influence of the wind speed. Therefore it is essential to design pergola to maximize wind speed and minimize solar radiation to achieve comfort in the hot summer. The $SET^*$ under pergola I, III were exceeded $28.7^{\circ}C$ and $30.4^{\circ}C$ which were the upper limit of thermal comfort and tolerable zone during all most daytimes in the 1st experiment(maximum air temperature $37.5^{\circ}C$). The $SET^*$ under pergola I was exceeded $28.7^{\circ}C$ which was the upper limit of thermal comfort zone at 13h, that under pergola II was exceeded $28.7^{\circ}C$ from 8h to 14h, meanwhile the $SET^*$ under pergola I, II were within thermal tolerable zone during most daytimes in the 2nd experiment(maximum air temperature $34.4^{\circ}C$). Therefore to ensure the thermal comfort of pergola for summer hottest days, pergola should be shaded with not only reed blind but also climbing and shade plants. $T_{mrt}$ and $SET^*$ were suitable index for the evaluation of pergola's shading effects and outdoors.

Solar Energy Prediction Based on Artificial neural network Using Weather Data (태양광 에너지 예측을 위한 기상 데이터 기반의 인공 신경망 모델 구현)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.05a
    • /
    • pp.457-459
    • /
    • 2018
  • Solar power generation system is a energy generation technology that produces electricity from solar power, and it is growing fastest among renewable energy technologies. It is of utmost importance that the solar power system supply energy to the load stably. However, due to unstable energy production due to weather and weather conditions, accurate prediction of energy production is needed. In this paper, an Artificial Neural Network(ANN) that predicts solar energy using 15 kinds of meteorological data such as precipitation, long and short wave radiation averages and temperature is implemented and its performance is evaluated. The ANN is constructed by adjusting hidden parameters and parameters such as penalty for preventing overfitting. In order to verify the accuracy and validity of the prediction model, we use Mean Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) as performance indices. The experimental results show that MAPE = 19.54 and MAE = 2155345.10776 when Hidden Layer $Sizes=^{\prime}16{\times}10^{\prime}$.

  • PDF

Heat Budget at Gampo in the Eastern Coast of Korea in 2006 (2006년 동해안 감포의 열수지)

  • Choi, Yong-Kyu;Han, In-Seong;Suh, Young-Sang;Go, Woo-Jin;Kim, Sang-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.1
    • /
    • pp.33-39
    • /
    • 2009
  • Based on the monthly weather report of Korea Meteorological Administration (KMA) and daily sea surface temperature (SST) data from National Fisheries Research and Development Institute (NFRDI) in 2006, heat budget was estimated at Gampo in the eastern coast of Korea, the region occuring the cold water known as upwelling in summer. Net heat flux was transported from the air to the sea surface during February to November, and it amounts to $345Wm^{-2}$ in monthly mean value. During December to January, the transfer of net heat flux was conversed from the sea surface to the air with $-56Wm^{-2}$ in minimum of monthly mean value in January. Long wave radiation was ranged from $6Wm^{-2}\;to\;106Wm^{-2}$. Sensible heat was varied from $-36Wm^{-2}$(June) to $61Wm^{-2}$(February) and showed negative values from April to August. Latent heat showed $20Wm^{-2}$(July) with its minimum in July and $49Wm^{-2}$ with its maximum in March in monthly mean value. The annual mean of net heat flux is $129Wm^{-2}$, giving an annual heat surplus of $22Wm^{-2}$. Thus, during summer, the upwelled cold water at Gampo, appears to compensate the heat gain. However the ways in which these compensations are accomplished remains to be clarified.

Performance comparison of SVM and ANN models for solar energy prediction (태양광 에너지 예측을 위한 SVM 및 ANN 모델의 성능 비교)

  • Jung, Wonseok;Jeong, Young-Hwa;Park, Moon-Ghu;Lee, Chang-Kyo;Seo, Jeongwook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.626-628
    • /
    • 2018
  • In this paper, we compare the performances of SVM (Support Vector Machine) and ANN (Artificial Neural Network) machine learning models for predicting solar energy by using meteorological data. Two machine learning models were built by using fifteen kinds of weather data such as long and short wave radiation average, precipitation and temperature. Then the RBF (Radial Basis Function) parameters in the SVM model and the number of hidden layers/nodes and the regularization parameter in the ANN model were found by experimental studies. MAPE (Mean Absolute Percentage Error) and MAE (Mean Absolute Error) were considered as metrics for evaluating the performances of the SVM and ANN models. Sjoem Simulation results showed that the SVM model achieved the performances of MAPE=21.11 and MAE=2281417.65, and the ANN model did the performances of MAPE=19.54 and MAE=2155345.10776.

  • PDF

Air Temperature Differences in Areas with High-rise Buildings (초고층빌딩지역의 기온차)

  • Jin, Wen-Cheng;Lee, Kyoo-Seock
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2012
  • In Seoul, skyscrapers are built in commercial zones known as residential-commercial complexes, which cause such environmental problems as urban heat islands(UHI) and air pollution. To investigate air temperature differences in areas near skyscrapers at Gangnam-gu, Seoul, South Korea, fixed air temperature observation and traverse observations were performed from March 16, 2008 to March 15, 2009. The annual mean air temperature at Tower Palace(TPL) was higher than that at Sookmyung Girls' High School(SMG) by $0.7^{\circ}C$, although the distance between the two observation positions is only 200m. The number of tropical nights at TPL was 13, while that at SMG was 5. The higher air temperature at TPL was due to a significantly lower sky view factor(SVF), which prevented long-wave radiation from emitting into the sky. The highest air temperature increases near TPL occurred on summer nights because of the high-electricity consumption value of $70.22Wh/m^2$ for the TPL block in August due to air conditioning for cooling. It is concluded that the warm air pocket centered on TPL.

Analysis of Sensitivity to Prediction of Particulate Matters and Related Meteorological Fields Using the WRF-Chem Model during Asian Dust Episode Days (황사 발생 기간 동안 WRF-Chem 모델을 이용한 미세먼지 예측과 관련 기상장에 대한 민감도 분석)

  • Moon, Yun Seob;Koo, Youn Seo;Jung, Ok Jin
    • Journal of the Korean earth science society
    • /
    • v.35 no.1
    • /
    • pp.1-18
    • /
    • 2014
  • The purpose of this study was to analyze the sensitivity of meteorological fields and the variation of concentration of particulate matters (PMs) due to aerosol schemes and dust options within the WRF-Chem model to estimate Asian dusts affected on 29 May 2008 in the Korean peninsula. The anthropogenic emissions within the model were adopted by the $0.5^{\circ}{\pm}0.5^{\circ}$ RETRO of the global emissions, and the photolysis option was by Fast-J photolysis. Also, three scenarios such as the RADM2 chemical mechanism and MADE/SORGAM aerosol, the MOSAIC 8 section aerosol, and the GOCART dust erosion were simulated for calculating Asian dust emissions. As a result, the scenario of the RADM2 chemical mechanism & MADE/SORGAM aerosol depicted higher concentration than the others' in both Asian dusts and the background concentration of PMs. By comparing of the daily mean of PM10 measured at each air quality monitoring site in Seoul with the scenario results, the correlation coefficient was 0.67, and the root mean square error was $44{\mu}gm^{-3}$. In addition, the air temperature, the wind speed, the planetary boundary layer height, and the outgoing long-wave radiation were simulated under conditions of no chemical option with these three scenarios within the WRF or WRF-Chem model. Both the spatial distributions of the PBL height and the wind speed of u component among the meteorological factors were similar to those of the Asia dusts in range of 1,800-3,000 m and $2-16ms^{-1}$, respectively. And, it was shown that both scenarios of the RADM2 chemical mechanism and MADE/SORGAM aerosol and the GOCART dust erosion were interacted on-line between meteorological factors and Asian dusts or aerosols within the model because the outgoing long-wave radiation was changed to lower than the others.

Effects for the Thermal Comfort Index Improvement of Park Woodlands and Lawns in Summer (여름철 공원 수림지와 잔디밭의 온열쾌적지수 개선 효과)

  • Ryu, Nam-Hyong;Lee, Chun-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.42 no.6
    • /
    • pp.21-30
    • /
    • 2014
  • The purpose of this study was to evaluate human thermal comfort in summer by the type of greenery in parks and to explore planning solutions to supply a comfortable thermal environment in parks. The research was conducted in three different land cover types: a park with multi-wide-canopied trees(WOODLAND), park with grass(LAWN) and park with pavement(PAV) as reference sites in Hamyang-Gun SangrimPark. Field measurements of air temperature, relative humidity and wind velocity, short-wave and long-wave radiation from six directions(east, west, north, south, upward and downward) were carried out in the summer of 2014(August 21-23 and 29-30). Mean Radiant Temperature($T_{mrt}$) absorbed by a human-biometeorological reference person was estimated from integral radiation and the calculation of angular factors. The thermal comfort index PET was calculated by Rayman software, UTCI, OUT_SET$^*$ were calculated using the UTCI Calculator and the Thermal Comfort Calculator of Richard DeDear. The results showed that the WOODLAND has the maximum cooling effect during daytime, reduced air temperatures/$T_{mrt}$ by up to $5.9^{\circ}C/35^{\circ}C$ compared to PAV and lowered heat stress values despite increasing relative humidity values and decreasing wind velocity. While the LAWN had very slight cooling effects during daytime, reduced air temperatures/$T_{mrt}$ by up to $0.9^{\circ}C/3^{\circ}C$ compared to PAV, the improvement effects of the thermal comfort index was very slight. However, during nighttime the microclimatic and radiant conditions of WOODLAND, LAWN, and PAV were similar owing to the absence of solar radiation, reduction of wind velocity and an increase in relative humidity. Because the shading and evapotranspiration effects of the WOODLAND were much greater than the evapotranspiration effects of the LAWN, it can be said that the solutions for supplying comfortable thermal environment in parks are to amplify the green volumes rather than green areas. This study was undertaken to evaluate the human thermal comfort in summer of WOODLAND/LAWN parks and to determine the improvement effects of thermal comfort index. These results can contribute to the provision better thermal comfort for park users during park planning.