• Title/Summary/Keyword: Long Tunnels

Search Result 187, Processing Time 0.027 seconds

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

Experimental study on the effect of exhaust ventilation by shafts for case of fire in long traffic tunnels (장대 교통터널 화재시 수직갱의 배연효과에 관한 실험적 연구)

  • Yoo, Yong-ho;Yoon, Chan-hoon;Yoon, Sung-wook;Kim, Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.1
    • /
    • pp.27-36
    • /
    • 2005
  • The objective of this study was to analyze the smoke movement and to investigate the effect of exhaust ventilation using by shafts for case of fire in long tunnels. Based on Froude modeling, the 1/50 scaled model tunnel (20 m long) was constructed by acrylic tubes and test were carried out systematically. The results of the shaft height test show that the effect on exhaust ventilation by a shaft delays the propagation time of backlayering, and the temperature decreases as the shaft height increases. If the fire occurs downstream of the shaft, the backlayering develops to get stronger by the shaft exhaust effect and then the propagation of CO and temperature increase along with propagation of CO. That is to say, in the case of fire downstream of the shaft, the shaft has the advantage of smoke exhaust effects, but it might result in a dangerous situation for the escaping passengers due to the more developed backlayering.

  • PDF

A preliminary study of prehistoric tunnel-dwelling sites and rock-shelters in Che-Ju Island, Korea (제주도지방의 선사문화와 동굴${\cdot}$바위 그늘 주거지)

  • Lee, Chung-Kyu;Kang, Chang-Wha
    • The Korean Journal of Quaternary Research
    • /
    • v.1 no.1
    • /
    • pp.47-67
    • /
    • 1987
  • Geologically speaking, many lava tunnels and caves are characteristic geomorphic features in Che-Ju Island. Especially, cave-ins are found along cliffs of shoreline and streams. The prehistoric early inhabitants in the island used the tunnels and cave-ins as their major shelters from palaeolithic period to the iron period (AD300-600). These tunnel-dwelling sites and rock-shelters are unsidered to be long-term shelters from the palaeolithic period to the neolithic period. However, these shelters and sites might be changed as temporary camping sites from the bronze to the iron period.

  • PDF

Application of Norwegian Method of Tunnelling (NMT) Principles to bypass landslides in mountainous terrain

  • Bhasin, Rajinder;Aarset, Arnstein
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.22 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • Tunnelling to bypass major landslide areas is considered as a good and long-term environmentally friendly solution to reduce an existing hazard. In Norway, hundreds of kilometres of tunnels have been constructed in areas prone to landslides and snow avalanches. Although tunnelling is considered as an expensive mitigation strategy for bypassing landslides, analysis indicate that in some cases the cost of building a tunnel can be repaid by savings in driving costs (fuel) alone over a period of 5-10 years due to reduced driving distances. The other benefits of constructing tunnels in landslide areas include savings in time and increased safety. The Norwegian Method of Tunnelling (NMT) is considered safe, efficient and cost effective compared to other tunnelling techniques. Some aspects of NMT, which are considered safe and cost efficient, are presented. The application of updated rock support techniques, including reinforced ribs of shotctrete (RRS), which is a key component of the Norwegian Method of Tunnelling (NMT), is highlighted.

프리캐스트 판넬을 이용한 장대터널 내부라이닝 개선방안 연구

  • Lee, Du-Hwa;O, Se-Jun;Choe, Chang-Rim
    • 도로교통
    • /
    • s.84
    • /
    • pp.23-39
    • /
    • 2001
  • Increasing constructions of tunnels are become larger of the size and longer of the length. Construction of the tunnellinings is in poor working environment, for example, dark and narrow underground. Therefore, it is difficult to constructlining by required quality in these poor working conditions. In case of the designing tunnel in large scale, particularly, there may be several problems as follows; delay of construction due to a long time in constructing lining and difficulty of quality control. It is also indicated that longitudinal cracks of them are main defects in domestic tunnels. Therefore, in this study, the precast lining method is introduced for solving problems, which are delay of the tunnel construction a d deterioration of tunnel lining. Precast linings have mainly been constructed in Norway and North Europe. A new construction method of tunnel lining, suitable in domestic situation, is introduced by detailed case study. Also, useful materials for design and construction of Precast lining are presented.

  • PDF

A Study on the Economic Analysis of Disaster Safety Costs by the Water-Bulwark System against the Tunnel Fire (터널 화재진압시스템 도입에 따른 재난 안전비용의 경제성 분석 연구)

  • Chung­Hyun Baek
    • Journal of the Korea Safety Management & Science
    • /
    • v.25 no.2
    • /
    • pp.129-138
    • /
    • 2023
  • This study attempted to analyze the comparative advantage in terms of disaster safety costs in verifying the effectiveness and economic feasibility of the high-performance water-bulwark system in the pole tunnel, which was recently promoted as a part of the acceleration of vehicles. The tunnel to be analyzed was divided into a short tunnel(Anyang, Cheonggye) and a long tunnel(Suraksan, Sapaesan). As a result, it was analyzed that 25% of the improvement effect would occur if one lane was secured by applying the Water-Bulwark System. It was analyzed that this is because the time value cost, which accounts for a large proportion of the traffic congestion cost of short tunnels and pole tunnels, differs depending on the congestion time and traffic volume, not the length of the tunnel.

Assessment of elastic-wave propagation characteristics in grouting-improved rock mass around subsea tunnels (해저터널 주변 그라우팅 보강암반의 탄성파 전달특성 평가)

  • Kim, Ji-Won;Hong, Eun-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.235-244
    • /
    • 2016
  • Grouting is frequently used before the construction of subsea tunnels to mitigate problems that can occur in weak ground zones such as joints, faults or unconsolidated settlements during construction. The grout material injected into rock mass often flows through the discontinuities present in the host rock and hence, joint properties such as its distribution, roughness and thickness greatly affect the properties of grouting-improved rocks. The grouting-improved zones near subsea tunnels are also subjected to high water pressures that can cause long-term weathering in the form of changes in grout microstructure and crack formation and lead to subsequent changes in ground properties. Therefore, an assessment method is needed to accurately measure changes in the grouting-improved zones near subsea tunnels. In this study, the elastic wave propagation characteristics in grouting-improved rocks were tested for various axial stress levels, curing time, joint roughness and thickness conditions under laboratory conditions and the results were compared with wave velocity standards in different Korean rock mass classification systems to provide a basis for inferring improvement in grouted rock-mass.

A Study on the Characteristics of Each Type of LED Digital Landscape Lighting in Expressway Tunnel (고속도로 터널 내 LED Digital 경관조명 디자인의 유형별 특징 비교 연구)

  • Hwang, Ye-Jin
    • Journal of Digital Convergence
    • /
    • v.19 no.12
    • /
    • pp.457-462
    • /
    • 2021
  • As South Korea is a mountainous topography, installation of tunnel is essential for construction of expressway in straight lines. According to "2019 Road Bridge and Tunnel Status Report", there are 2,682 tunnels in Korea with total length of 2,077km. Tunnels take up 1.9% of total road length and the number of tunnel increased by 94% with 1,300 newly constructed tunnels over the 10 years. According to domestic and foreign researches, a long tunnel over 1km in expressway has dark lightings and monotonous wall design which decrease driver's concentration and make the driver feel bored. This leads to feeling fatigue and drowsiness more easily. In response, Korea Expressway Corporation installed design lighting that increases attentiveness on 10 tunnels with total length over 3km by 2020. To reduce the risks of accident that may happen inside the tunnel, this study conducted a comparative analysis on characteristics of each type of LED landscape lighting installed inside the expressway tunnel. The study aimed on providing the basic material for effective installation of LED landscape lighting for securing driving stability, reducing fatigue, and lowering the risk of drowsiness.

Tunnel-lining Back Analysis Based on Artificial Neural Network for Characterizing Seepage and Rock Mass Load (투수 및 이완하중 파악을 위한 터널 라이닝의 인공신경망 역해석)

  • Kong, Jung-Sik;Choi, Joon-Woo;Park, Hyun-Il;Nam, Seok-Woo;Lee, In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.8
    • /
    • pp.107-118
    • /
    • 2006
  • Among a variety of influencing components, time-variant seepage and long-term underground motion are important to understand the abnormal behavior of tunnels. Excessiveness of these two components could be the direct cause of severe damage on tunnels, however, it is not easy to quantify the effect of these on the behavior of tunnels. These parameters can be estimated by using inverse methods once the appropriate relationship between inputs and results is clarified. Various inverse methods or parameter estimation techniques such as artificial neural network and least square method can be used depending on the characteristics of given problems. Numerical analyses, experiments, or monitoring results are frequently used to prepare a set of inputs and results to establish the back analysis models. In this study, a back analysis method has been developed to estimate geotechnically hard-to-known parameters such as permeability of tunnel filter, underground water table, long-term rock mass load, size of damaged zone associated with seepage and long-term underground motion. The artificial neural network technique is adopted and the numerical models developed in the first part are used to prepare a set of data for learning process. Tunnel behavior, especially the displacements of the lining, has been exclusively investigated for the back analysis.

Application of Long Gauge Fiber Optic Sensors to Construction Engineering Structures (장대 광변형 센서의 건설 구조물 적용)

  • 로드테니슨;안명운;김상환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10c
    • /
    • pp.61-78
    • /
    • 2001
  • Various kind of fiber optic gauge sensors are available that can be bonded to civil engineering structures such as bridges, dams, tunnels and pipelines. A new fiber optic long gauge has significant advantages over other fiber optic sensors. These gauges can vary in length from less than 10 cm up to 30 m and provide the structural engineer with accurate measurements of displacement. These displacements can be converted to strains by dividing the measurement by the long gauge length. Using new optical technology, the long gauge instrument developed by FOX-TEK can choose max. 30 meters of gauge length so as to measure the very early stress/strain correlation curve. And this gauge length to be extended up to 100 meter in 2002.

  • PDF