• 제목/요약/키워드: Long Term Runoff

검색결과 286건 처리시간 0.025초

A Delta- and Attention-based Long Short-Term Memory (LSTM) Architecture model for Rainfall-runoff Modeling

  • Ahn, Kuk-Hyun;Yoon, Sunghyun
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2022
  • 최근에 딥 러닝(Deep learning) 기반의 많은 방법들이 수문학적 모형 및 예측에서 의미있는 결과를 보여주고 있지만 더 많은 연구가 요구되고 있다. 본 연구에서는 수자원의 가장 대표적인 모델링 구조인 강우유출의 관계의 규명에 대한 모형을 Long Short-Term Memory (LSTM) 기반의 변형 된 방법으로 제시하고자 한다. 구체적으로 본 연구에서는 반응변수인 유출량에 대한 직접적인 고려가 아니라 그의 1차 도함수 (First derivative)로 정의되는 Delta기반으로 모형을 구축하였다. 또한, Attention 메카니즘 기반의 모형을 사용함으로써 강우유출의 관계의 규명에 있어 정확성을 향상시키고자 하였다. 마지막으로 확률 기반의 예측를 생성하고 이에 대한 불확실성의 고려를 위하여 Denisty 기반의 모형을 포함시켰고 이를 통하여 Epistemic uncertainty와 Aleatory uncertainty에 대한 상대적 정량화를 수행하였다. 본 연구에서 제시되는 모형의 효용성 및 적용성을 평가하기 위하여 미국 전역에 위치하는 총 507개의 유역의 일별 데이터를 기반으로 모형을 평가하였다. 결과적으로 본 연구에서 제시한 모형이 기존의 대표적인 딥 러닝 기반의 모형인 LSTM 모형과 비교하였을 때 높은 정확성뿐만 아니라 불확실성의 표현과 정량화에 대한 유용한 것으로 확인되었다.

  • PDF

경사도에 따른 CN보정에 의한 L-THIA 직접유출 모의 영향 평가 (The Effect of Slope-based Curve Number Adjustment on Direct Runoff Estimation by L-THIA)

  • 김종건;임경재;박윤식;허성구;박준호;안재훈;김기성;최중대
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.897-905
    • /
    • 2007
  • Approximately 70% of Korea is composed of forest areas. Especially 48% of agricultural field is practiced at highland areas over 400 m in elevation in Kangwon province. Over 90% of highland agricultural farming is located at Kangwon province. Runoff characteristics at the mountainous area such as Kangwon province are largely affected by steep slopes, thus runoff estimation considering field slopes needs to be utilized for accurate estimation of direct runoff. Although many methods for runoff estimation are available, the Soil Conservation Service (SCS), now Natural Resource Conservation Service (NRCS), Curve Number (CN)-based method is used in this study. The CN values were obtained from many plot-years dataset obtained from mid-west areas of the United States, where most of the areas have less than 5% in slopes. Thus, the CN method is not suitable for accurate runoff estimation where significant areas are over 5% in slopes. Therefore, the CN values were adjusted based on the average slopes (25.8% at Doam-dam watershed) depending on the 5-day Antecedent Moisture Condition (AMC). In this study, the CN-based Long-Term Hydrologic Impact Assessment (L-THIA) direct runoff estimation model used and the Web-based Hydrograph Analysis Tool (WHAT) was used for direct runoff separation from the stream flow data. The $R^2$ value was 0.65 and the Nash-Sutcliffe coefficient value was 0.60 when no slope adjustment was made in CN method. However, the $R^2$ value was 0.69 and the Nash-Sutcliffe value was 0.69 with slope adjustment. As shown in this study, it is strongly recommended the slope adjustment in the CN direct runoff estimation should be made for accurate direct runoff prediction using the CN-based L-THIA model when applied to steep mountainous areas.

빗물이용의 수문학적 평가: 1. 수문해석 (Hydrological Evaluation of Rainwater Harvesting: 1. Hydrological Analysis)

  • 유철상;김경준;윤주환
    • 한국물환경학회지
    • /
    • 제24권2호
    • /
    • pp.221-229
    • /
    • 2008
  • This study revised a model for hydrologically analyzing rainwater harvesting facilities considering their rainfall-runoff properties and the data available. This model has only a few parameters, which can be estimated with rather poor measurements available. The model has a non-linear module for rainfall loss, and the remaining rainfall excess (effective rainfall) is assumed to be inflow to the storage tank. This model has been applied for the rainwater harvesting facilities in Seoul National University, Korea Institute of Construction Technology, and the Daejon World Cup Stadium. As a result, the runoff coefficients estimated were about 0.9 for the building roof as a rainwater collecting surface and about 0.18 for the playground. This result is coincident with that for designing the rainwater harvesting facilities to show the accuracy of model and the simulation results.

Analysis of Nonpoint Source Pollution Runoff from Urban Land Uses in South Korea

  • Rhee, Han-Pil;Yoon, Chun-Gyeong;Lee, Seung-Jae;Choi, Jae-Ho;Son, Yeong-Kwon
    • Environmental Engineering Research
    • /
    • 제17권1호
    • /
    • pp.47-56
    • /
    • 2012
  • A long-term nationwide nonpoint-source pollution monitoring program was initiated by the Ministry of Environment Republic of Korea (ME) in 2007. Monitoring devices including rain gauges, flow meters, and automatic samplers were installed in monitoring sites to collect dynamic runoff data in 2008-2009. More than 10 rainfall events with three or more antecedent dry days were monitored per year. More than 10 samples were collected and analyzed per event. So far, five land use types (single family, apartments, education facilities, power plants, and other public facilities) have been monitored 23 to 24 times each. Characterization of the runoff from different land use types will aid unit load estimation in Korea and hopefully in other countries with similar land use. The monitoring results will be reported regularly at national and international levels.

비점오염원 관리를 위한 유출포착곡선 (Runoff Capture Curve for Non-Point Source Management)

  • 김상단;조덕준
    • 한국물환경학회지
    • /
    • 제23권6호
    • /
    • pp.829-836
    • /
    • 2007
  • For the purpose of managing non-point sources, water quality control basins (WQCBs) are often designed to capture rainfall events smaller than extreme events. The design rainfall statistics and runoff capture rates for sizing a WQCB should be derived from the local long-term continuous rainfall record. In this study, the 31-year continuous rainfall data recorded in Busan is analyzed to derive the synthesized runoff capture curve incorporated with SCS curve number.

월유출량계열의 확장과 예측을 위한 추계학적 다중 입출력모형 (Stochastic Multiple Input-Output Model for Extension and Prediction of Monthly Runoff Series)

  • 박상우;전병호
    • 물과 미래
    • /
    • 제28권1호
    • /
    • pp.81-90
    • /
    • 1995
  • 본 연구에서는 장기간의 수문기상자료를 보유하고 있으나 유출량자료의 관측년한이 짧은 유역에서 장기간의 월유출량자료를 확장하고 예측할 수 있는 추계학적 시스템 모형을 개발하고자 한다. 그 방법으로 주기성과 경향성을 갖는 월유출량, 월강수량 및 윌증발량자료를 시계열 분석하여 seasonal ARIMA 형태의 단변량 모형을 유도하는 한편, 각 계열간의 교차상관분석으로부터 월강수량 및 윌증발량을 입력변수로 하고 월유출량을 출력변수로 하는 다중 입력-단일 출력관계의 설명모형을 유도하여 단변량 시계열모형과 비교 검토하였다. 본 연구의 결과 월유출량자료의 확장과 예측에 있어서 다중 입출력모형의 정확성과 적용가능성이 매우 높은 것으로 판단되었다.

  • PDF

국립공원내 홍수피해 저감을 위한 미계측 산림지역의 설계홍수량 추정 (Estimation of Design Flood Runoff in Ungaged Forest Watershed to Reduce Flood Damage within the National Park)

  • 김상민;임상준;이상호;김형호;마호섭;정원옥
    • 한국농공학회논문집
    • /
    • 제51권5호
    • /
    • pp.107-113
    • /
    • 2009
  • The purpose of this study is to estimate the design flood runoff for ungaged forest watershed to reduce the flood damage in national park. Daewonsa watershed in Jirisan National Park was selected as study watershed, of which characteristic factors were obtained from GIS data. Flood runoff was simulated using SCS unit hydrograph module in HEC-HMS model. SCS Curve Number (CN) was calculated from forest type area weighted average method. Huff's time distribution of second-quartile storm of the Sancheong weather station, which is nearest from study watershed, was used for design flood runoff estimation. Critical storm duration for the study watershed was 3 hrs. Based on the critical duration, the peak runoff for each sub-watershed were simulated. It is recommended to monitor the long-term flow data for major stream stations in National Park for a better reliable peak runoff simulation results.

L-THIA를 이용한 서울특별시 유출량 공간적 분석: 2011년 7월 27일 강우를 중심으로 (Analysis of Spatical Distribution of Surface Runoff in Seoul City using L-THIA: Case Study on Event at July 27, 2011)

  • 전지홍
    • 한국농공학회논문집
    • /
    • 제53권6호
    • /
    • pp.171-183
    • /
    • 2011
  • Temporal and spatical surface runoff by heavy rainfall during 25~28 July, 2011 causing urban flooding at Seoul were analyzed using Long-Term Hydrologic Impact Assessment (L-THIA). L-THIA was calibrated for 1988~1997 and validated for 1998~2007 using monthly observed data at Hangangseoul watershed which covers 90 % of Seoul city. As a results of calibration and validation of L-THIA at Hangangseoul watershed, Nash-Sutcliffe coefficients were 0.99 for calibration and 0.99 for validation. The simulated values were good agreement with observed data and both calibrated and validated levels were "very good" based on calibration criteria. The calibrated curve number (CN) values of residential and other urban area represented 87 % and 93 % of impervious area, respectively, which were maximum percentage of impervious area. As a result of L-THIA application at Seoul city during 25~28 July, 2011, most of rainfall (54 %, 287.49 mm) and surface runoff (65 %, 247.32) were generated at 27 July, 2011 and a significant amount of rainfall and surface runoff were occurred at southeastern Seoul city. As a result of bi-hourly spatial and temporal analysis during 27 July, 2011, surface runoff during 2:00~4:00 and 8:00~10:00 were much higher than those during other times and surface runoff located at Seocho-gu during 6:00~8:00 represented maximum value with maximum rainfall intensity which caused landslide from Umyun mountain.

연유출량 추정모형 개발 (Development of the Annual Runoff Estimation Model)

  • 김양수;정상만;서병하
    • 물과 미래
    • /
    • 제24권3호
    • /
    • pp.95-104
    • /
    • 1991
  • 본 연구에서는 장기 수자원계획시 유역내 가용 수자원을 파악하는데 이용할 수 있는 새로운 연유출량 추정모형의 개발을 시도하였다. 연구범위는 우리나라 전역으로 1945년부터 1988년 까지의 육수량, 유출량 자료를 이용하였다. 모형개발을 위한 표준유역은 유출의 인공조작이 없고 수위자료가 양호하며, 수위-유량 관계곡선이 작성되어 있는 46개 지점을 택하였으며, 표본 유역별로 일수위 자료를 수집, 정리하여 일유출량을 산정하고 합산하여 연유출량을 산정하였다. 또한, 연평균강수량을 산정하여 지점별로 연유출율을 계산하고 이것을 기초로 우리나라 연평균 유출율을 추정하였다. 그리고, 연유출량과 역특성인자들을 이용하여 연유출량 추정모형을 개발하였으며, 실제유역에 적용하여 모형의 합리성을 검토하였다.

  • PDF

도시유역 저류형 시스템 설계를 위한 CSOs 산정 (Storm-Water CSOs for Reservoir System Designs in Urban Area)

  • 조덕준;김명수;이정호;박무종;김중훈
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2005년도 학술발표회 논문집
    • /
    • pp.1199-1203
    • /
    • 2005
  • Combined sewer overflows(CSOs) are themselves a significant source of water pollution. Therefore, the control of urban drainage for CSOs reduction and receiving water quality protection is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as stormwater detention storage is highly dependant on the temporal variability of storage capacity available(which is influenced by the duration of interevent dry periods) as well as the infiltration capacity of soil and recovery of depression storage. As a result, a contiunous approach is required to adequately size such facilities. This study for the continuous long-term analysis of urban dranage system used analytical Probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model have evolved that offer much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics or the subject area using analytical Probabilistic model. Runoff characteristics manifasted the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual COSs and number of COSs when the interceptor capacity is in the range 3xDWF(dry weather flow). Also, calculated the average annual mass of pollutant lost in CSOs using Event Mean Concentration. Finally, this study presented a dicision of storage volume for CSOs reduction and water quality protection.

  • PDF