• Title/Summary/Keyword: Long Term Runoff

Search Result 284, Processing Time 0.025 seconds

A Study on Flood Prediction without Rainfall Data (강우 데이터를 쓰지 않는 홍수예측법에 관한 연구)

  • 김치홍
    • Journal of the Korean Professional Engineers Association
    • /
    • v.18 no.2
    • /
    • pp.1-5
    • /
    • 1985
  • In the flood prediction research, it is pointed out that the difficulty of flood prediction is the frequently experienced overestimation of flood peak. That is caused by the rainfall prediction difficulty and the nonlinearity of hydrological phenomena. Even though the former reason will remain still unsolved, but the latter one can be possibly resolved the method of the AMRA (Auto Regressive Moving Average) model for each runoff component as developed by Dr. Hino and Dr. Hasebe. The principle of the method consists of separating though the numerical filters the total runoff time series into long-term, intermediate and short-term components, or ground water flow, interflow, and surface flow components. As a total system, a hydrological system is a non-linear one. However, once it is separated into two or three subsystems, each subsystem may be treated as a linear system. Also the rainfall components into each subsystem a estimated inversely from the runoff component which is separated from the observed flood. That is why flood prediction can be done without rainfall data. In the prediction of surface flow, the Kalman filter will be applicable but this paper shows only impulse function method.

  • PDF

A Fundamental Study on the Snowmelt Effects for Long-Term Runoff Analysis (장기 유출해석에서의 융설영향에 관한 기초 연구)

  • Bae, Deok-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.6
    • /
    • pp.833-844
    • /
    • 1998
  • The objectives of this study are to adopt a snowmelt model for coupling a rainfall-runoff model and to study snowmelt effects for long-term runoff analysis on the northeast mountaneous area in Korea. The NWS temperature-index snowmelt model was selected and tested on the 1,059+,6 km$^2$ Naerinchen basin. It can be observed that the time variations of the computed areal extents of snow cover from the model are well agreement with those of the observe station snowfall records on the Inje meteorological station. It is also evident that the computed soil water contents and river flows indicate quite different behaviors with or without snowmelt model. It is concluded that the snowmelt model works well and the snowmelt effects for multi-decadal river flow computations are important on the study area.

  • PDF

Effect of Forest Growth and Thinning on the Long-term Water Balance in a Coniferous Forest (침엽수인공림에서 임분 성장 및 간벌이 장기 물수지에 미치는 영향)

  • Choi, Hyung-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.4
    • /
    • pp.157-164
    • /
    • 2011
  • Long-term annual water balances are analyzed for two forest catchments located in Gwangneung covered with forests of different types and ages. The water balance trends of the two catchments from 1982 to 2009 are compared to identify the effect of forest growth and thinning on the water balance in a planted coniferous forest catchment. According to the averaged annual precipitation and runoff for the four designated periods from 1982 to 2009, the water balance of the old natural broad-leaved forest catchment (GB) remained relatively unchanged. In contrast, the young planted coniferous forest catchment (GC) showed significant changes in the water balance due to the forest growing and thinning. The results showed that the catchment runoff decreases with increasing tree age whereas the forest thinning results in an increase in catchment runoff. The mean annual runoff from the catchment GC after thinning increased by 1.7 times, compared with the mean annual runoff before forest thinning. The mean annual runoff from the catchment GB was very stable throughout the period. However, such an effect of forest thinning appeared to last only for about 10 year-period, after which the water yield increment in the catchment GC disappeared. It indicates that the proper forest management should be reconsidered at the interval of 10 years to effectively reduce water loss and increase water yield in the planted coniferous forest.

A Study of Optimal-CSOs by Continuous Rainfall/Runoff Simulation Techniques (연속 강우-유출 모의기법을 이용한 최적 CSOs 산정에 관한 연구)

  • Jo, Deok Jun;Kim, Myoung Su;Lee, Jung Ho;Kim, Joong Hoon
    • Journal of Korean Society on Water Environment
    • /
    • v.22 no.6
    • /
    • pp.1068-1074
    • /
    • 2006
  • For receiving water quality protection a control systems of urban drainage for CSOs reduction is needed. Examples in combined sewer systems include downstream storage facilities that detain runoff during periods of high flow and allow the detained water to be conveyed by an interceptor sewer to a centralized treatment plant during periods of low flow. The design of such facilities as storm-water detention storage is highly dependant on the temporal variability of storage capacity available as well as the infiltration capacity of soil and recovery of depression storage. For the continuous long-term analysis of urban drainage system this study used analytical probabilistic model based on derived probability distribution theory. As an alternative to the modeling of urban drainage system for planning or screening level analysis of runoff control alternatives, this model has evolved that offers much ease and flexibility in terms of computation while considering long-term meteorology. This study presented rainfall and runoff characteristics of the subject area using analytical probabilistic model. Runoff characteristics manifested the unique characteristics of the subject area with the infiltration capacity of soil and recovery of depression storage and was examined appropriately by sensitivity analysis. This study presented the average annual CSOs, number of CSOs and event mean CSOs for the decision of storage volume.

Analysis of future flood inundation change in the Tonle Sap basin under a climate change scenario

  • Lee, Dae Eop;Jung, Sung Ho;Yeon, Min Ho;Lee, Gi Ha
    • Korean Journal of Agricultural Science
    • /
    • v.48 no.3
    • /
    • pp.433-446
    • /
    • 2021
  • In this study, the future flood inundation changes under a climate change were simulated in the Tonle Sap basin in Cambodia, one of the countries with high vulnerability to climate change. For the flood inundation simulation using the rainfall-runoff-inundation (RRI) model, globally available geological data (digital elevation model [DEM]; hydrological data and maps based on Shuttle elevation derivatives [HydroSHED]; land cover: Global land cover facility-moderate resolution imaging spectroradiometer [GLCF-MODIS]), rainfall data (Asian precipitation-highly-resolved observational data integration towards evaluation [APHRODITE]), climate change scenario (HadGEM3-RA), and observational water level (Kratie, Koh Khel, Neak Luong st.) were constructed. The future runoff from the Kratie station, the upper boundary condition of the RRI model, was constructed to be predicted using the long short-term memory (LSTM) model. Based on the results predicted by the LSTM model, a total of 4 cases were selected (representative concentration pathway [RCP] 4.5: 2035, 2075; RCP 8.5: 2051, 2072) with the largest annual average runoff by period and scenario. The results of the analysis of the future flood inundation in the Tonle Sap basin were compared with the results of previous studies. Unlike in the past, when the change in the depth of inundation changed to a range of about 1 to 10 meters during the 1997 - 2005 period, it occurred in a range of about 5 to 9 meters during the future period. The results show that in the future RCP 4.5 and 8.5 scenarios, the variability of discharge is reduced compared to the past and that climate change could change the runoff patterns of the Tonle Sap basin.

Prediction of SWAT Stream Flow Using Only Future Precipitation Data (미래 강수량 자료만을 이용한 SWAT모형의 유출 예측)

  • Lee, Ji Min;Kum, Donghyuk;Kim, Young Sug;Kim, Yun Jung;Kang, Hyunwoo;Jang, Chun Hwa;Lee, Gwan Jae;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.1
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

Comparison of Long-Term Runoff in Urban Area by Rainfall-Runoff Relationship (강우-유출관계에 의한 도시지역의 장기유출 특성 비교)

  • Kim, Nam Won;Won, Yoo Seung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.610-614
    • /
    • 2004
  • 장기 유역 유출모형인 SWAT에 도시지역의 영향을 적절히 고려할 수 있도록 SWMM 모형을 포함시킨 SWAT-SWMM 결합모형을 테스트하기 위해 시험유역에 적용하였다. 이로부터 SWAT 모형과 SWAT-SWMM 결합모형에 의한 수문순환요소(지표수, 지하수, 하천유출, 증발산 등)를 비교${\cdot}$분석하였다. 또한 각 모형이 수문순환요소를 모식하는 방법을 비교${\cdot}$분석하여 SWAT-SWMM 결합모형을 개선하였다.

  • PDF

Evaluation of Runoff Prediction from a Coniferous Forest Watersheds and Runoff Estimation under Various Cover Degree Scenarios using GeoWEPP Watershed Model (GeoWEPP을 이용한 침엽수림 지역 유출특성 예측 및 다양한 식생 피도에 따른 유출량 평가)

  • Choi, Jaewan;Shin, Min Hwan;Cheon, Se Uk;Shin, Dongseok;Lee, Sung Jun;Moon, Sun Jung;Ryu, Ji Cheol;Lim, Kyoung Jae
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.4
    • /
    • pp.425-432
    • /
    • 2011
  • To control non-point source pollution at a watershed scale, rainfall-runoff characteristics from forest watersheds should be investigated since the forest is the dominant land use in Korea. Long-term monitoring would be an ideal method. However, computer models have been utilized due to limitations in cost and labor in performing long-term monitoring at the watersheds. In this study, the Geo-spatial interface to the Water Erosion Prediction Project (GeoWEPP) model was evaluated for its runoff prediction from a coniferous forest dominant watersheds. The $R^2$ and the NSE for calibrated result comparisons were 0.77 and 0.63, validated result comparisons were 0.92, 0.89, respectively. These comparisons indicated that the GeoWEPP model can be used in evaluating rainfall-runoff characteristics. To estimate runoff changes from a coniferous forest watershed with various cover degree scenarios, ten cover degree scenarios (10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%) were run using the calibrated GeoWEPP model. It was found that runoff increases with decrease in cover degree. Runoff volume was the highest ($206,218.66m^3$) at 10% cover degree, whereas the lowest ($134,074.58m^3$) at 100% cover degree due to changes in evapotranspiration under various cover degrees at the forest. As shown in this study, GeoWEPP model could be efficiently used to investigate runoff characteristics from the coniferous forest watershed and effects of various cover degree scenarios on runoff generation.

Runoff Analysis of Climate Change Scenario in Gangjung Basin (기후변화 시나리오에 따른 강정천 유역의 유출특성 분석)

  • Lee, Jun-Ho;Yang, Sung-Kee;Kim, Min-Chul
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1649-1656
    • /
    • 2015
  • Jeju Island is the highest rain-prone area in Korea that possesses affluent water resources, but future climate changes are predicted to further increase vulnerabilities as resultant of increasing of extreme events and creating spatial-temporal imbalance in water resources. Therefore, this study aimed to provide basic information to establish a proper water resources management plan by evaluating the effects of climate change on water resources using climate change scenario. Direct runoff ratio for 15 years (2000~2014) was analyzed to be 11~32% (average of 23%), and average direct runoff ratio for the next 86 years (2015~2100) was found as 28%, showing an increase of about 22% compared to the present average direct runoff ratio (23%). To assess the effects of climate change on long-term runoff, monthly runoff variation of future Gangjeong watershed was analyzed by dividing three time periods as follows: Present (2000~2030), Future 1 (2031~2070) and Future 2 (2071~2100). The estimated results showed that average monthly runoff increases in the future and the highest runoff is shown by Future 2. Extreme values has been expected to occur more frequently in the future as compared to the present.

LONG-TERM STREAMFLOW SENSITIVITY TO RAINFALL VARIABILITY UNDER IPCC SRES CLIMATE CHANGE SCENARIO

  • Kang, Boo-sik;Jorge a. ramirez, Jorge-A.-Ramirez
    • Water Engineering Research
    • /
    • v.5 no.2
    • /
    • pp.81-99
    • /
    • 2004
  • Long term streamflow regime under virtual climate change scenario was examined. Rainfall forecast simulation of the Canadian Global Coupled Model (CGCM2) of the Canadian Climate Center for modeling and analysis for the IPCC SRES B2 scenario was used for analysis. The B2 scenario envisions slower population growth (10.4 billion by 2010) with a more rapidly evolving economy and more emphasis on environmental protection. The relatively large scale of GCM hinders the accurate computation of the important streamflow characteristics such as the peak flow rate and lag time, etc. The GCM rainfall with more than 100km scale was downscaled to 2km-scale using the space-time stochastic random cascade model. The HEC-HMS was used for distributed hydrologic model which can take the grid rainfall as input data. The result illustrates that the annual variation of the total runoff and the peak flow can be much greater than rainfall variation, which means actual impact of rainfall variation for the available water resources can be much greater than the extent of the rainfall variation.

  • PDF