• Title/Summary/Keyword: Long Short Term Memory (LSTM)

Search Result 495, Processing Time 0.024 seconds

A Study of Efficiency Information Filtering System using One-Hot Long Short-Term Memory

  • Kim, Hee sook;Lee, Min Hi
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • In this paper, we propose an extended method of one-hot Long Short-Term Memory (LSTM) and evaluate the performance on spam filtering task. Most of traditional methods proposed for spam filtering task use word occurrences to represent spam or non-spam messages and all syntactic and semantic information are ignored. Major issue appears when both spam and non-spam messages share many common words and noise words. Therefore, it becomes challenging to the system to filter correct labels between spam and non-spam. Unlike previous studies on information filtering task, instead of using only word occurrence and word context as in probabilistic models, we apply a neural network-based approach to train the system filter for a better performance. In addition to one-hot representation, using term weight with attention mechanism allows classifier to focus on potential words which most likely appear in spam and non-spam collection. As a result, we obtained some improvement over the performances of the previous methods. We find out using region embedding and pooling features on the top of LSTM along with attention mechanism allows system to explore a better document representation for filtering task in general.

City Gas Pipeline Pressure Prediction Model (도시가스 배관압력 예측모델)

  • Chung, Won Hee;Park, Giljoo;Gu, Yeong Hyeon;Kim, Sunghyun;Yoo, Seong Joon;Jo, Young-do
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.33-47
    • /
    • 2018
  • City gas pipelines are buried underground. Because of this, pipeline is hard to manage, and can be easily damaged. This research proposes a real time prediction system that helps experts can make decision about pressure anomalies. The gas pipline pressure data of Jungbu City Gas Company, which is one of the domestic city gas suppliers, time variables and environment variables are analysed. In this research, regression models that predicts pipeline pressure in minutes are proposed. Random forest, support vector regression (SVR), long-short term memory (LSTM) algorithms are used to build pressure prediction models. A comparison of pressure prediction models' preformances shows that the LSTM model was the best. LSTM model for Asan-si have root mean square error (RMSE) 0.011, mean absolute percentage error (MAPE) 0.494. LSTM model for Cheonan-si have RMSE 0.015, MAPE 0.668.

Prediction of Sea Water Condition Changes using LSTM Algorithm for the Fish Farm (LSTM 알고리즘을 이용한 양식장 해수 상태 변화 예측)

  • Rijayanti, Rita;Hwang, Mintae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.3
    • /
    • pp.374-380
    • /
    • 2022
  • This paper shows the results of a study that predicts changes in seawater conditions in sea farms using machine learning-based long short term memory (LSTM) algorithms. Hardware was implemented using dissolved oxygen, salinity, nitrogen ion concentration, and water temperature measurement sensors to collect seawater condition information from sea farms, and transferred to a cloud-based Firebase database using LoRa communication. Using the developed hardware, seawater condition information around fish farms in Tongyeong and Geoje was collected, and LSTM algorithms were applied to learning results using these actual datasets to obtain predictive results showing 87% accuracy. Flask and REST APIs were used to provide users with predictive results for each of the four parameters, including dissolved oxygen. These predictive results are expected to help fishermen reduce significant damage caused by fish group death by providing changes in sea conditions in advance.

Long Short-Term Memory Neural Network assisted Peak to Average Power Ratio Reduction for Underwater Acoustic Orthogonal Frequency Division Multiplexing Communication

  • Waleed, Raza;Xuefei, Ma;Houbing, Song;Amir, Ali;Habib, Zubairi;Kamal, Acharya
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.1
    • /
    • pp.239-260
    • /
    • 2023
  • The underwater acoustic wireless communication networks are generally formed by the different autonomous underwater acoustic vehicles, and transceivers interconnected to the bottom of the ocean with battery deployed modems. Orthogonal frequency division multiplexing (OFDM) has become the most popular modulation technique in underwater acoustic communication due to its high data transmission and robustness over other symmetrical modulation techniques. To maintain the operability of underwater acoustic communication networks, the power consumption of battery-operated transceivers becomes a vital necessity to be minimized. The OFDM technology has a major lack of peak to average power ratio (PAPR) which results in the consumption of more power, creating non-linear distortion and increasing the bit error rate (BER). To overcome this situation, we have contributed our symmetry research into three dimensions. Firstly, we propose a machine learning-based underwater acoustic communication system through long short-term memory neural network (LSTM-NN). Secondly, the proposed LSTM-NN reduces the PAPR and makes the system reliable and efficient, which turns into a better performance of BER. Finally, the simulation and water tank experimental data results are executed which proves that the LSTM-NN is the best solution for mitigating the PAPR with non-linear distortion and complexity in the overall communication system.

Development of Surface Weather Forecast Model by using LSTM Machine Learning Method (기계학습의 LSTM을 적용한 지상 기상변수 예측모델 개발)

  • Hong, Sungjae;Kim, Jae Hwan;Choi, Dae Sung;Baek, Kanghyun
    • Atmosphere
    • /
    • v.31 no.1
    • /
    • pp.73-83
    • /
    • 2021
  • Numerical weather prediction (NWP) models play an essential role in predicting weather factors, but using them is challenging due to various factors. To overcome the difficulties of NWP models, deep learning models have been deployed in weather forecasting by several recent studies. This study adapts long short-term memory (LSTM), which demonstrates remarkable performance in time-series prediction. The combination of LSTM model input of meteorological features and activation functions have a significant impact on the performance therefore, the results from 5 combinations of input features and 4 activation functions are analyzed in 9 Automated Surface Observing System (ASOS) stations corresponding to cities/islands/mountains. The optimized LSTM model produces better performance within eight forecast hours than Local Data Assimilation and Prediction System (LDAPS) operated by Korean meteorological administration. Therefore, this study illustrates that this LSTM model can be usefully applied to very short-term weather forecasting, and further studies about CNN-LSTM model with 2-D spatial convolution neural network (CNN) coupled in LSTM are required for improvement.

Time-Series Prediction of Baltic Dry Index (BDI) Using an Application of Recurrent Neural Networks (Recurrent Neural Networks를 활용한 Baltic Dry Index (BDI) 예측)

  • Han, Min-Soo;Yu, Song-Jin
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.50-53
    • /
    • 2017
  • Not only growth of importance to understanding economic trends, but also the prediction to overcome the uncertainty is coming up for long-term maritime recession. This paper discussed about the prediction of BDI with artificial neural networks (ANN). ANN is one of emerging applications that can be the finest solution to the knotty problems that may not easy to achieve by humankind. Proposed a prediction by implementing neural networks that have recurrent architecture which are a Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM). And for the reason of comparison, trained Multi Layer Perceptron (MLP) from 2009.04.01 to 2017.07.31. Also made a comparison with conventional statistics, prediction tools; ARIMA. As a result, recurrent net, especially RNN outperformed and also could discover the applicability of LSTM to specific time-series (BDI).

  • PDF

Conv-LSTM-based Range Modeling and Traffic Congestion Prediction Algorithm for the Efficient Transportation System (효율적인 교통 체계 구축을 위한 Conv-LSTM기반 사거리 모델링 및 교통 체증 예측 알고리즘 연구)

  • Seung-Young Lee;Boo-Won Seo;Seung-Min Park
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.321-327
    • /
    • 2023
  • With the development of artificial intelligence, the prediction system has become one of the essential technologies in our lives. Despite the growth of these technologies, traffic congestion at intersections in the 21st century has continued to be a problem. This paper proposes a system that predicts intersection traffic jams using a Convolutional LSTM (Conv-LSTM) algorithm. The proposed system models data obtained by learning traffic information by time zone at the intersection where traffic congestion occurs. Traffic congestion is predicted with traffic volume data recorded over time. Based on the predicted result, the intersection traffic signal is controlled and maintained at a constant traffic volume. Road congestion data was defined using VDS sensors, and each intersection was configured with a Conv-LSTM algorithm-based network system to facilitate traffic.

Case Study of Building a Malicious Domain Detection Model Considering Human Habitual Characteristics: Focusing on LSTM-based Deep Learning Model (인간의 습관적 특성을 고려한 악성 도메인 탐지 모델 구축 사례: LSTM 기반 Deep Learning 모델 중심)

  • Jung Ju Won
    • Convergence Security Journal
    • /
    • v.23 no.5
    • /
    • pp.65-72
    • /
    • 2023
  • This paper proposes a method for detecting malicious domains considering human habitual characteristics by building a Deep Learning model based on LSTM (Long Short-Term Memory). DGA (Domain Generation Algorithm) malicious domains exploit human habitual errors, resulting in severe security threats. The objective is to swiftly and accurately respond to changes in malicious domains and their evasion techniques through typosquatting to minimize security threats. The LSTM-based Deep Learning model automatically analyzes and categorizes generated domains as malicious or benign based on malware-specific features. As a result of evaluating the model's performance based on ROC curve and AUC accuracy, it demonstrated 99.21% superior detection accuracy. Not only can this model detect malicious domains in real-time, but it also holds potential applications across various cyber security domains. This paper proposes and explores a novel approach aimed at safeguarding users and fostering a secure cyber environment against cyber attacks.

Non-Intrusive Speech Intelligibility Estimation Using Autoencoder Features with Background Noise Information

  • Jeong, Yue Ri;Choi, Seung Ho
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.12 no.3
    • /
    • pp.220-225
    • /
    • 2020
  • This paper investigates the non-intrusive speech intelligibility estimation method in noise environments when the bottleneck feature of autoencoder is used as an input to a neural network. The bottleneck feature-based method has the problem of severe performance degradation when the noise environment is changed. In order to overcome this problem, we propose a novel non-intrusive speech intelligibility estimation method that adds the noise environment information along with bottleneck feature to the input of long short-term memory (LSTM) neural network whose output is a short-time objective intelligence (STOI) score that is a standard tool for measuring intrusive speech intelligibility with reference speech signals. From the experiments in various noise environments, the proposed method showed improved performance when the noise environment is same. In particular, the performance was significant improved compared to that of the conventional methods in different environments. Therefore, we can conclude that the method proposed in this paper can be successfully used for estimating non-intrusive speech intelligibility in various noise environments.

Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy (해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Byeon, Seong-Hyeon;Kim, Young-Won
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM was required for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.