• Title/Summary/Keyword: Long Memory Process

Search Result 164, Processing Time 0.022 seconds

Level Shifts and Long-term Memory in Stock Distribution Markets (주식유통시장의 층위이동과 장기기억과정)

  • Chung, Jin-Taek
    • Journal of Distribution Science
    • /
    • v.14 no.1
    • /
    • pp.93-102
    • /
    • 2016
  • Purpose - The purpose of paper is studying the static and dynamic side for long-term memory storage properties, and increase the explanatory power regarding the long-term memory process by looking at the long-term storage attributes, Korea Composite Stock Price Index. The reason for the use of GPH statistic is to derive the modified statistic Korea's stock market, and to research a process of long-term memory. Research design, data, and methodology - Level shifts were subjected to be an empirical analysis by applying the GPH method. It has been modified by taking into account the daily log return of the Korea Composite Stock Price Index a. The Data, used for the stock market to analyze whether deciding the action by the long-term memory process, yield daily stock price index of the Korea Composite Stock Price Index and the rate of return a log. The studies were proceeded with long-term memory and long-term semiparametric method in deriving the long-term memory estimators. Chapter 2 examines the leading research, and Chapter 3 describes the long-term memory processes and estimation methods. GPH statistics induced modifications of statistics and discussed Whittle statistic. Chapter 4 used Korea Composite Stock Price Index to estimate the long-term memory process parameters. Chapter 6 presents the conclusions and implications. Results - If the price of the time series is generated by the abnormal process, it may be located in long-term memory by a time series. However, test results by price fixed GPH method is not followed by long-term memory process or fractional differential process. In the case of the time-series level shift, the present test method for a long-term memory processes has a considerable amount of bias, and there exists a structural change in the stock distribution market. This structural change has implications in level shift. Stratum level shift assays are not considered as shifted strata. They exist distinctly in the stock secondary market as bias, and are presented in the test statistic of non-long-term memory process. It also generates an error as a long-term memory that could lead to false results. Conclusions - Changes in long-term memory characteristics associated with level shift present the following two suggestions. One, if any impact outside is flowed for a long period of time, we can know that the long-term memory processes have characteristic of the average return gradually. When the investor makes an investment, the same reasoning applies to him in the light of the characteristics of the long-term memory. It is suggested that when investors make decisions on investment, it is necessary to consider the characters of the long-term storage in reference with causing investors to increase the uncertainty and potential. The other one is the thing which must be considered variously according to time-series. The research for price-earnings ratio and investment risk should be composed of the long-term memory characters, and it would have more predictability.

Asymptotic Properties of Variance Change-point in the Long-memory Process

  • Chu Minjeong;Cho Sinsup
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2000.11a
    • /
    • pp.23-26
    • /
    • 2000
  • It is noted that many econometric time series have long-memory properties. A long-memory process, or strongly dependent process, is characterized by hyperbolic decaying autocorrelations and unbounded spectral density at the origin. Since the long-memory property can be observed by data obtained from rather a long period, there is some possibility of parameter change in the process. In this paper, we consider the estimation of change-point when there is a change in the variance of a long-memory process. The estimator is based on some reasonable statistic and the consistency is shown using Taqqu's strong reduction theorem

  • PDF

Bootstrap methods for long-memory processes: a review

  • Kim, Young Min;Kim, Yongku
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.1
    • /
    • pp.1-13
    • /
    • 2017
  • This manuscript summarized advances in bootstrap methods for long-range dependent time series data. The stationary linear long-memory process is briefly described, which is a target process for bootstrap methodologies on time-domain and frequency-domain in this review. We illustrate time-domain bootstrap under long-range dependence, moving or non-overlapping block bootstraps, and the autoregressive-sieve bootstrap. In particular, block bootstrap methodologies need an adjustment factor for the distribution estimation of the sample mean in contrast to applications to weak dependent time processes. However, the autoregressive-sieve bootstrap does not need any other modification for application to long-memory. The frequency domain bootstrap for Whittle estimation is provided using parametric spectral density estimates because there is no current nonparametric spectral density estimation method using a kernel function for the linear long-range dependent time process.

Long Memory Characteristics in the Korean Stock Market Volatility

  • Cho, Sinsup;Choe, Hyuk;Park, Joon Y
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.3
    • /
    • pp.577-594
    • /
    • 2002
  • For the estimation and test of long memory feature in volatilities of stock indices and individual companies semiparametric approach, Geweke and Porter-Hudak (1983), is employed. Empirical study supports the strong evidence of volatility persistence in Korean stock market. Most of indices and individual companies have the feature of long term dependence of volatility. Hence the short memory models are unable to explain the volatilities in Korean stock market.

ON ALMOST SURE REPRESENTATIONS FOR LONG MEMORY SEQUENCES

  • Ho, Hwai-Chung
    • Journal of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.741-753
    • /
    • 1998
  • Let G(*) be a Borel function applied to a stationary long memory sequence {X$_{i}$} of standard Gaussian random variables. Focusing on the process {G(X$_{i}$)}, the present paper establishes the almost sure representation for the empirical quantile process, that is, Bahadur's representation, and for the empirical process with respect to sample mean. Statistical applications of the representations are also addressed.sed.

  • PDF

Effects of Financial Crises on the Long Memory Volatility Dependency of Foreign Exchange Rates: the Asian Crisis vs. the Global Crisis

  • Han, Young Wook
    • East Asian Economic Review
    • /
    • v.18 no.1
    • /
    • pp.3-27
    • /
    • 2014
  • This paper examines the effects of financial crises on the long memory volatility dependency of daily exchange returns focusing on the Asian crisis in 97-98 and the Global crisis in 08-09. By using the daily KRW-USD and JPY-USD exchange rates which have different trading regions and volumes, this paper first applies both the parametric FIGARCH model and the semi-parametric Local Whittle method to estimate the long memory volatility dependency of the daily returns and the temporally aggregated returns of the two exchange rates. Then it compares the effects of the two financial crises on the long memory volatility dependency of the daily returns. The estimation results reflect that the long memory volatility dependency of the KRW-USD is generally greater than that of the JPY-USD returns and the long memory dependency of the two returns appears to be invariant to temporal aggregation. And, the two financial crises appear to affect the volatility dynamics of all the returns by inducing greater long memory dependency in the volatility process of the exchange returns, but the degree of the effects of the two crises seems to be different on the exchange rates.

Neuropsychology of Memory (기억의 신경심리학)

  • Rhee, Min-Kyu
    • Sleep Medicine and Psychophysiology
    • /
    • v.4 no.1
    • /
    • pp.1-14
    • /
    • 1997
  • This paper reviewed models to explain memory and neuropsychological tests to assess memory. Memory was explained in cognitive and neuroanatomical perspectives, Cognitive model describes memory as structure and process. In structure model, memory is divided into three systems: sensory memory, short-term memory(working memory), and long-term memory. In process model, there are broadly three categories of memory process: encoding, storage, and retrieval. Memory process work in memory structure. There are two prominent models of the neuroanatomy of memory, derived from the work of Mishkin and Appenzeller and that of Squire and Zola-Morgan. These two models are the most useful for the clinician in part because they take into account the connections between the limbic and frontal cortical regions. The major difference between the two models concerns the role of the amygdala in memory processess. Mishkin and his colleagues believe that the amygdala plays a significant role while Squire and his colleagues do not. The most popular and widely used tests of memory ability such as WMS-R, AVLT, CVLT, HVLT. RBMT, CFT, and BVRT-R, were reviewed.

  • PDF

Value-at-Risk Estimation of the KOSPI Returns by Employing Long-Memory Volatility Models (장기기억 변동성 모형을 이용한 KOSPI 수익률의 Value-at-Risk의 추정)

  • Oh, Jeongjun;Kim, Sunggon
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.163-185
    • /
    • 2013
  • In this paper, we investigate the need to employ long-memory volatility models in terms of Value-at-Risk(VaR) estimation. We estimate the VaR of the KOSPI returns using long-memory volatility models such as FIGARCH and FIEGARCH; in addition, via back-testing we compare the performance of the obtained VaR with short memory processes such as GARCH and EGARCH. Back-testing says that there exists a long-memory property in the volatility process of KOSPI returns and that it is essential to employ long-memory volatility models for the right estimation of VaR.

Multi-layered attentional peephole convolutional LSTM for abstractive text summarization

  • Rahman, Md. Motiur;Siddiqui, Fazlul Hasan
    • ETRI Journal
    • /
    • v.43 no.2
    • /
    • pp.288-298
    • /
    • 2021
  • Abstractive text summarization is a process of making a summary of a given text by paraphrasing the facts of the text while keeping the meaning intact. The manmade summary generation process is laborious and time-consuming. We present here a summary generation model that is based on multilayered attentional peephole convolutional long short-term memory (MAPCoL; LSTM) in order to extract abstractive summaries of large text in an automated manner. We added the concept of attention in a peephole convolutional LSTM to improve the overall quality of a summary by giving weights to important parts of the source text during training. We evaluated the performance with regard to semantic coherence of our MAPCoL model over a popular dataset named CNN/Daily Mail, and found that MAPCoL outperformed other traditional LSTM-based models. We found improvements in the performance of MAPCoL in different internal settings when compared to state-of-the-art models of abstractive text summarization.